Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

    • Environmental Topics
    • Air
    • Bed Bugs
    • Cancer
    • Chemicals, Toxics, and Pesticide
    • Emergency Response
    • Environmental Information by Location
    • Health
    • Land, Waste, and Cleanup
    • Lead
    • Mold
    • Radon
    • Research
    • Science Topics
    • Water Topics
    • A-Z Topic Index
    • Laws & Regulations
    • By Business Sector
    • By Topic
    • Compliance
    • Enforcement
    • Laws and Executive Orders
    • Regulations
    • Report a Violation
    • Environmental Violations
    • Fraud, Waste or Abuse
    • About EPA
    • Our Mission and What We Do
    • Headquarters Offices
    • Regional Offices
    • Labs and Research Centers
    • Planning, Budget, and Results
    • Organization Chart
    • EPA History

Breadcrumb

  1. Home
  2. Green Chemistry

Presidential Green Chemistry Challenge: 2006 Greener Synthetic Pathways Award

Merck & Co., Inc.

 

Novel Green Synthesis for β-Amino Acids Produces the Active Ingredient in JanuviaTM

 

Innovation and Benefits: Merck discovered a highly innovative and efficient catalytic synthesis for sitagliptin, which is the active ingredient in JanuviaTM, the company's new treatment for type 2 diabetes. This revolutionary synthesis creates 220 pounds less waste for each pound of sitagliptin manufactured and increases the overall yield by nearly 50 percent. Over the lifetime of JanuviaTM, Merck expects to eliminate the formation of at least 330 million pounds of waste, including nearly 110 million pounds of aqueous waste.

Summary of Technology: JanuviaTM is a new treatment for type 2 diabetes; Merck filed for regulatory approval in December 2005. Sitagliptin, a chiral β-amino acid derivative, is the active ingredient in JanuviaTM. Merck used a first-generation synthesis of sitagliptin to prepare over 200 pounds for clinical trials. With modifications, this synthesis could have been a viable manufacturing process, but it required eight steps including a number of aqueous work-ups. It also required several high-molecular-weight reagents that were not incorporated into the final molecule and, therefore, ended up as waste.

While developing a highly efficient second-generation synthesis for sitagliptin, Merck researchers discovered a completely unprecedented transformation: the asymmetric catalytic hydrogenation of unprotected enamines. In collaboration with Solvias, a company with expertise in this area, Merck scientists discovered that hydrogenation of unprotected enamines using rhodium salts of a ferrocenyl-based ligand as the catalyst gives β-amino acid derivatives of high optical purity and yield. This new method provides a general synthesis of β-amino acids, a class of molecules well-known for interesting biological properties. Merck scientists and engineers applied this new method in a completely novel way: using it in the final synthetic step to maximize the yield in terms of the valuable chiral catalyst. The dehydro precursor to sitagliptin used in the asymmetric hydrogenation is prepared in an essentially one-pot procedure. Following the hydrogenation, Merck recovers and recycles over 95 percent of the valuable rhodium. The reactive amino group of sitagliptin is only revealed in the final step; as a result, there is no need for protecting groups. The new synthesis has only three steps and increases the overall yield by nearly 50 percent.

This strategy is broadly applicable to other pharmaceutical syntheses; Merck has used it to make several exploratory drug candidates. Implementing the new route on a manufacturing scale has reduced the amount of waste by over 80 percent and completely eliminated aqueous waste streams. This second-generation synthesis will create 220 pounds less waste for each pound of sitagliptin manufactured. Over the lifetime of the drug, Merck expects to eliminate the formation of 330 million pounds or more of waste, including nearly 110 million pounds of aqueous waste. Because Merck's new synthesis has reduced the amount of raw materials, processing time, energy, and waste, it is a more cost-effective option than the first-generation synthesis. The technology discovered, developed, and implemented by Merck for the manufacture of JanuviaTM is an excellent example of scientific innovation resulting in benefits to the environment.


Other resources:

  • Learn more about green chemistry.
  • Read more about environmental sustainability at Merck & Co., Inc. 

Note: Disclaimer

Return to the list of all winners including the 2006 Award Winners.

Green Chemistry

  • Basics of Green Chemistry
  • Green Chemistry Challenge Awards
    • Winners
Contact Us about Green Chemistry
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on December 17, 2024
  • Assistance
  • Spanish
  • Arabic
  • Chinese (simplified)
  • Chinese (traditional)
  • French
  • Haitian Creole
  • Korean
  • Portuguese
  • Russian
  • Tagalog
  • Vietnamese
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshot
  • Grants
  • No FEAR Act Data
  • Plain Writing
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions
  • Site Feedback

Follow.