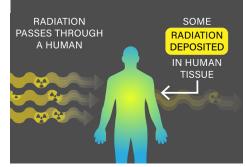
Radiation Terms and Units


Radioactivity

Radioactivity is the release of radiation by a material.

Absorbed Dose

Absorbed dose measures ionizing radiation absorbed.

There are different but interrelated units for measuring radioactivity and estimating health effects.

Radioactivity

Absorbed Dose

Effective Dose

Radioactivity is the release of ionizing radiation when the nucleus of a radioactive atom decays. Activity refers to the frequency of radioactive decay produced by a radioactive material. Different types of ionizing radiation have the potential to damage human tissue.

Use

Measuring soil, water and air samples

Units

Bq | becquerels Ci | curies

rad | rad

U.S. unit

international unit U.S. unit 1 becquerel (Bq) = 2.703×10^{-11} curie (Ci) 1 curie (Ci) = $3.7 \times 10^{10} \text{ becquerel}$ (Bq) 1 kilobecquerel (kBq) = 1,000 Bq1 picocurie (pCi) = 0.000 000 000 001 Ci

Examples Surface water natural radium-226 level: 0.0037 to 0.0185 Bg per liter (L) or 0.1 to 0.5 pCi/L

Drinking water radium limit for daily consumption: 0.185 Bq/L or 5.0 pCi/L

Absorbed dose describes the amount of energy deposited per unit mass in an object or person.

Use

Units

Gy | gray

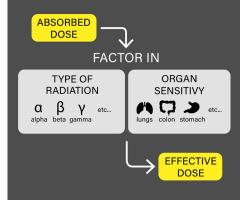
international unit

1 rad = 0.01 gray (Gy)1 milligray (mGy) = 0.001 Gy

1 milligray (mGy) = 0.001 Gy

Measuring dose from medical equipment

Examples


Dose to the lens of eves from a brain CT scan: about 60 mGy or 6 rad

Dose to the thyroid from a chest CT scan: about 10 mGy or 1 rad

Effective Dose

Effective dose indicates radiation health effects for a population.

Effective dose takes the absorbed dose (see above) and adjusts it for radiation type and relative organ sensitivity. The result is an indicator for the potential for long-term health effects (i.e., cancer and hereditary effects) from an exposure. It is used to set regulatory limits that protect against long-term health effects in a population. It also allows experts to compare anticipated health effects from different exposure situations. Because this value is a calculated approximation, not a physical quantity, it cannot be used to predict individual health effects.

Use

Used to set protective levels for groups of people

Units

Sv | sievert international unit rem | rem U.S. unit

1 sievert (Sv) = 100 rem

1 rem = 0.01 sievert (Sv)1 millisievert (mSv) = 0.001 Sv 1 microsievert (μ Sv) = 0.000 001 Sv 1 millirem (mrem) = 0.001 rem

Examples

Worker radiation limit annual dose limit: 0.05 Sv or 5 rem

Evacuate/shelter in place guidance for emergencies: needed if projected dose exceeds 10-50 mSv or 1-5 rem over four days

Reference Material

Agency for Toxic Substances and Disease Registry, 1990. "Toxicological Profile for Radium" (p. 53). Retrieved from <u>https://www.atsdr.cdc.gov/toxprofiles/tp144.pdf</u>

Radionuclides Rule. Retrieved from https://www.epa.gov/dwreginfo/radionuclides-rule

Sources for Absorbed Dose Unit Examples

Gao, Yiming et al., 2020. Patient-Specific Organ and Effective Dose Estimates in Adult Oncologic CT. American Journal of Roentgenology, 214:4, 738-746. Retrieved from <u>https://www.ajronline.org/doi/full/10.2214/AJR.19.21197</u>

Sources for Effective Dose Unit Examples

United States Nuclear Regulatory Commission, 1991. "Regulations (10 CFR) Subpart C – Occupational Dose Limits." Retrieved from <u>https://www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-1201.html</u>

United States Environmental Protection Agency, 2017. "PAG Manual: Protective Action Guides and Planning Guidance for Radiological Incidents" (p. 50). Retrieved from <u>https://www.epa.gov/sites/</u><u>default/files/2017-01/documents/epa_pag_manual_final_revisions_01-11-2017_cover_disclaimer_8.pdf</u>