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This chapter of the User Manual will introduce you to U.S. EPA’s web-based BenMAP tool. 

After explaining how to register to use the tool and orienting you to the tool’s Home Page, it 

will guide you through the process of setting up and running two types of analyses, one 

focused on health benefits associated with an improvement in air quality and the other on 

the distribution of air pollutant exposures across population groups.  

1.1 How to Access BenMAP 

Returning Users: If you have already registered, navigate to https://benmap.epa.gov, and 

login using your username and password. 

New Users: In order to use BenMAP, you first need to complete a registration process, 

described below.  

1.1.1 New User Registration 

The registration steps differ for U.S. EPA and non-U.S. EPA users. 

EPA Users 

1. Navigate to https://benmap.epa.gov 

a. If you are on the U.S. EPA network, you will be automatically logged in. 

b. If you are accessing BenMAP via the Internet, you will be greeted with a login 

page and should use your PIV card to authenticate. If you are a U.S. EPA 

account user without a PIV card, you should access the tool via VDI desktop or 

follow the login.gov route described below. 

2. If you are not already a member of the BenMAP Users group, you will see a page 

directing you to https://waa.epa.gov to request access. 

https://benmap.epa.gov/
https://benmap.epa.gov/
https://waa.epa.gov/
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a. Click Community Access and then Request Community Access. 

b. Select the BenMAP Users group. 

c. Click Submit at the bottom of the page. 

3. Once you receive an email indicating that you have been added to the BenMAP Users 

group, return to https://benmap.epa.gov and proceed with Section 1.2 of this Quick Start 

Guide. 

Non-U.S. EPA Users 

1. Navigate to https://waa.epa.gov 

2. Click the Login button on the login.gov tab.  

 

https://benmap.epa.gov/
https://waa.epa.gov/
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• If you already have a Login.gov account, enter your username and password 

and click Login. On the following web page, select the Community Access 

menu and select Request Web Community Access. 

• If you do not already have a Login.gov account, click Create an Account and 

complete the process to configure and activate your account. Once the 

account is active, you will be asked to complete the Request Web Community 

Access form. If you are not automatically directed to the form, select the 

Community Access menu and select Request Web Community Access. 

3. Complete all the fields on the Request Web Community Access form (see screenshot 

on next page). Your U.S. EPA contact is Neal Fann, fann.neal@epa.gov, 919-541-0209. 

At the bottom of the page, select the BenMAP Users community from the dropdown 

list. 
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4. After submitting the form, you will receive one email acknowledging receipt of your 

request and then, after a period of time, another notifying you that your request has 

been approved. 

5. Once approved, proceed to https://benmap.epa.gov, log in using login.gov, and 

proceed with Section 1.2 of this Quick Start Guide. 

1.2 Home Screen 

Across the top of the screen is a black banner with four icons: Home, Data Center, Help, and 

Feedback. These features are described below.  

 

  This is the BenMAP welcome screen. To begin a new analysis, choose Analyze 

Health Impacts of Air Pollutants or Analyze Exposure to Air Pollutants. If you have 

previously conducted analyses in BenMAP, you can also start from a template, which allows 

you to re-run or modify a previous analysis.  
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  The data center contains records of your past analyses and the custom file 

uploads that you created or that have been shared with you by others.  

To view your active, pending, or completed tasks, click Manage Tasks 

. If you have any active or pending tasks, the panels on this 

screen will identify your task, its status, and progress. Completed tasks are shown 

beneath the list of active/pending tasks. 

To view or upload datasets in the tool’s database, click Manage Data

.  You will then see the following: 
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To view or upload air quality data, click Review Air Quality 

. Select a pollutant from the drop-down menu, and the 

default air quality surfaces will be displayed.  

 

Clicking on a specific air quality layer will display the air quality values in the table in 

the bottom portion of this screen. 
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To view or upload baseline health incidence data, click Review Incidence 

. The default baseline health incidence will be 

displayed. Clicking on a specific baseline health incidence dataset will display the 

incidence rate values in the table in the bottom portion of this screen. Reviewing and 

adding baseline health incidence is discussed in further detail in Section 5.3. 

 

 

  The Help screen links to https://www.epa.gov/benmap/benmap-cloud, a webpage 

that includes this user documentation for BenMAP and other more detailed references 

supporting the health benefits quantification and valuation approaches employed in the tool.   

https://www.epa.gov/benmap/benmap-cloud
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  Clicking this icon directs you to a form where you can provide feedback on the 

BenMAP tool: https://www.epa.gov/benmap/forms/contact-us-about-benmap.  

1.3 Conducting a Health Impacts Analysis 

The following steps guide you through a basic BenMAP health impacts analysis. From the 

Home screen, click Analyze Health Impacts of Air Pollutants to start estimating health 

benefits.  

 

You will be directed to a new screen with a progress bar at the top that shows all the steps of 

a BenMAP analysis: steps shown in gray have yet to completed; steps shown in blue with a 

check mark   have been completed; and a step shown in blue with a pencil icon  

indicates the current step.  

 

https://www.epa.gov/benmap/forms/contact-us-about-benmap
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1.3.1 Step 1: Where? 

The first step is to select where you want to perform your analysis. BenMAP analyses can be 

conducted at a variety of scales, ranging from global to national to city or neighborhood 

scale. The selection you make here will establish the geographical boundaries of your 

analysis; later you will select the scale at which benefits will be estimated within those 

boundaries. Currently, U.S. National is the only option available in this step. 

 

Select U.S. National and click Continue to move on to the next step. 

1.3.2 Step 2: What pollutant? 

In this step, you select the pollutant of concern; this is the pollutant for which BenMAP will 

estimate health effects. The tool currently supports health impact calculations for ground-

level ozone and fine particles (<2.5 μm). Only one pollutant may be analyzed per run. 

Choosing a pollutant will determine which air quality surfaces and health impact functions 

you will be able to select later. The U.S. EPA website provides more information on 

particulate matter pollution and ground-level ozone pollution and associated health effects. 

https://www.epa.gov/pm-pollution
https://www.epa.gov/ground-level-ozone-pollution
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Select Fine particles (<2.5 μm) and click Continue to move on to the next step, or Back to 

edit previous selections. 

1.3.3 Step 3: What air quality? 

To estimate population exposure to air pollution, BenMAP combines air quality data assigned 

to a spatial grid (i.e., an “air quality surface”) with spatially gridded population data. In this 

step, you will select a pair of air quality surfaces for BenMAP to compare. The first of these 

surfaces represents pollutant concentrations that represent the state of the world before an 

air quality-related policy or action has been implemented (Pre-policy); the second represents 

concentrations after implementing the policy or action (Post-policy). BenMAP calculates the 

difference in pollutant concentrations between these surfaces. These differences are used to 

calculate health impacts.  You may select an existing air quality surface from the BenMAP 

database or create new surfaces from your own air quality data. BenMAP can generate new 

surfaces from .csv files of air quality data (instructions for preparing your own .csv file are 

here). BenMAP currently accepts files of air quality concentrations generated from computer 

models that simulate the transport and transformation of pollutants. (Future versions will 

also accept air quality data from air quality monitor measurements).  
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BenMAP assigns air quality data to a spatial structure, where each cell contains an air quality 

concentration for your selected pollutant. These grids are characterized either by regularly 

shaped and sized cells (like those typically used by air quality models), or by irregular 

polygons representing political designations such as counties, provinces, cities, or nations. 

BenMAP assumes that the ambient pollutant concentrations assigned to a cell represent the 

exposure experienced by people living in that cell. The tool uses these values to estimate 

average pollutant concentrations that can be fed into formulas for estimating health impacts. 

The tool currently accepts air quality inputs assigned to a 12km grid, in addition to the U.S. 

National, State, and County level. 

If you want to use a pre-loaded air quality surface: 

Select your pre-policy air quality scenario. BenMAP currently contains two pre-loaded 

example ozone surfaces and four pre-loaded example PM2.5 surfaces.  

BenMAP will show you the surfaces that correspond to the pollutant you selected in Step 2.  

First, select the scenario you would like to represent the pre-policy (i.e., baseline) conditions 

of your analysis. Users may select only one pre-policy scenario per analysis.  

 

Metadata for the selected scenario are displayed below your selection and show information 

such as the count of grid cells and mean pollutant concentration. 
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Select your post-policy air quality scenario(s). BenMAP includes three sample PM2.5 post-

policy scenario air quality surfaces by default. The tool allows you to choose one or multiple 

post-policy scenarios, but for this example, select a single post-policy scenario. Click the PM 

Policy Example 1 2032 scenario to represent the air quality conditions following policy 

implementation. (To learn about running multiple post-policy scenarios simultaneously, see 

the instructions for batch runs in Section 5.3.)  

 

To view metadata for a selected post-policy scenario, choose an option from the Post Policy 

Scenario dropdown. 
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If you want to use your own data: 

To add a custom air quality layer, click . A window will pop up; in this 

window, you will need to provide a name for your custom air quality layer and its associated 

grid definition (i.e., the geographic scale of the data such as CMAQ 12km Nation, County, 

State, or Nation). You are also asked to provide the year of the data, its source, data type 

(Photochemical AQ model, Land Use Regression Model, Satellite, Sensor, or Hybrid Model), 

and a brief description. After entering this information, click the  icon at the top right to 

upload the air quality surface from your computer. For details on how to format custom air 

quality data files so that BenMAP recognizes them, see Section 5.2 of the user manual. 
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After you’ve uploaded your custom air quality layer, BenMAP will validate the surface to 

ensure it is formatted correctly. If your air quality layer passes the validation step and is 

successfully uploaded, the following pop-up message will appear. Click OK to dismiss.  
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If there is an error with your custom air quality surface, it will not pass the validation step 

and an error message will appear. A pop-up with possible errors is shown below. 

 

Other potential errors not shown here include using an unavailable pollutant or duplicating 

an existing air quality surface name. If your file does not pass the validation step, click OK and 

address the listed error(s) in the input file you created before re-uploading.  

Once you’ve selected or uploaded your pre-policy and post-policy air quality scenarios, click 

Continue to move on to the next step, or Back to edit previous selections. 

1.3.4 Step 4: Who will be exposed? 

BenMAP uses population data to understand how many people are exposed at each modeled 

or observed concentration of air pollution and can use population mapping to stratify 

exposures spatially and demographically. This information is critical for estimating numbers 

of avoided premature deaths or cases of illness associated with a change in air pollution. 
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Population data are associated with a grid definition, which specifies the geographic areas 

for which the data are available (e.g., County or 12-km grid cells). The pre-loaded population 

data for each grid cell are stratified by year and by age, race, ethnicity, and gender. The latter 

information helps to understand how pollution exposures may be distributed across 

subpopulations.   

You must currently select from pre-loaded U.S. population files in BenMAP. (Future versions 

will allow users to import their own population data.) 

 

Population details 

Step 1. What population dataset do you want to use?  

Select your population dataset from the drop-down menu. Currently, the only option in 

BenMAP is US CMAQ 12km Nation population. 

Step 2. Select population year(s) for each post-policy air quality scenario.  

Select a year or years for your population from the drop-down menu for each of the post-
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policy air quality scenarios you selected. Currently, the tool supports population years from 

2000 through 2055. Select the year 2020. 

Baseline Health Incidence 

In the third step on this screen, you will need to select data describing the baseline health 

status of your selected population. BenMAP’s baseline health datasets describe rates of 

disease and death in the U.S. population and include data on both incidence (the rate of new 

cases in the population per person per time) and in some cases prevalence (the fraction of 

the population with a specified disease or diagnosis at a given time). Because these data are 

meant to capture baseline conditions, these values reflect cases resulting from all stressors or 

risk factors, including air pollution. These data are specific to the set of health effects in the 

BenMAP database. 
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Step 3. What baseline health dataset do you want to use?  

Currently, the dataset options are: 

County This dataset contains baseline incidence and prevalence data 

for fatal and nonfatal health effects at U.S. county scale. More 

information on this dataset can be found here. 

County, race-stratified This dataset contains baseline mortality incidence data 

stratified by race at the U.S. county scale. More information on 

this dataset can be found here.  

County, ethnicity-stratified This dataset contains baseline mortality incidence data 

stratified by ethnicity at the U.S. county scale. More 

information on this dataset can be found here. 

County, ethnicity-adjusted  

race-stratified 

This dataset contains baseline mortality incidence data 

stratified by both race and ethnicity at the U.S. county scale. 

More information on this dataset can be found here.  

National This dataset contains baseline incidence and prevalence data 

for various nonfatal health effects that are currently only 

available at the U.S. national level. 

 

Your selection indicates your preferred data. If baseline health data are available at the 

spatial scale you selected for the health effects that you chose, BenMAP will use those data. 

If baseline health data are not available at the indicated spatial scale, BenMAP will select the 

next best available data. For example, baseline data for prevalence of asthma symptoms is 

currently available at the national level only. If you select County in this step and choose to 

evaluate the change in asthma symptoms associated with a change in air quality, BenMAP 

will automatically select National incidence for this health effect. You can check BenMAP’s 

incidence data selections when you get to Step 6. 
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Select the National baseline health dataset from the drop-down menu. Click Continue to 

move on to the next step, or Back to edit previous selections. 

If you want to use your own data: 

To add custom baseline health incidence data, proceed to the Data Center and click Manage 

Data    then click Review Incidence . 

On the Review Incidence page, select the Add Incidence Dataset button at the top of the 

page . A window will pop up; in this window, you will need to provide a name 

for your custom incidence dataset and the grid definition it uses (the geographic scale of the 

data, e.g., CMAQ 12km Nation, County, State, or Nation). After entering this information, click 

the  icon at the top right to upload the baseline health incidence from your computer. 

For details on how to format custom baseline health incidence files so that BenMAP 

recognizes them, see Section 5.3 of the user manual. 
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After you’ve uploaded your custom baseline health incidence, BenMAP will validate the data 

to ensure it is formatted correctly. If your baseline incidence passes the validation step and is 

successfully uploaded, the following pop-up message will appear. Click OK to dismiss.  

 

If there is an error with your custom baseline health incidence, it will not pass the validation 

step and an error message will appear. A pop-up with possible errors is shown below. 

 

If your file does not pass the validation step, click OK and address the listed error(s) in the 

input file you created before re-uploading.  
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1.3.5 Step 5: What health effects? 

Health impact functions (HIFs) estimate the change in the number of adverse health 

effects associated with a change in exposure to air pollution. The inputs to a health impact 

function include: the change in air quality concentration for a pollutant, the size of the 

exposed population, the baseline incidence rate of the adverse health effect, and an effect 

coefficient derived from epidemiological studies. In the steps above you selected the 

pollutant, population and baseline incidence rates. In this step you will select the health 

effects to estimate using these data.  

BenMAP currently allows you to select broad sets of health effects to evaluate, specific to 

your chosen pollutant. (Future versions of the tool will allow users either to specify individual 

health effects or to specify a custom set of both health effects and the functions used to 

quantify those effects.)  

 

Estimate a standard set of health effects. Check the box next to each set of health effects 

you would like to analyze. Available health impact functions are grouped into standard sets 

based on the type of health impact and duration of disease.  
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Premature Death – 

Primary 

Contains functions that estimate changes in premature death 

attributable to the air pollutant. These are the studies judged by U.S. 

EPA to be most appropriate to use for its primary benefits results when 

conducting major national regulatory impact analyses. 

Premature Death – All Contains an expanded set of functions for estimating premature 

deaths, including functions used in U.S. EPA’s sensitivity analyses in 

RIAs, and functions specific to at-risk groups. 

Chronic Effects – All Contains functions that estimate longer-term health conditions, e.g., 

new cases of asthma. These are the studies judged by U.S. EPA to be 

most appropriate to use for its primary benefits results when 

conducting major national regulatory impact analyses. 

Acute Effects – Primary Contains functions that estimate short-term health effects, e.g., 

respiratory emergency department (ED) visits. These are the studies 

judged by U.S. EPA to be most appropriate to use for its primary 

benefits results when conducting major national regulatory impact 

analyses. 

Acute Effects – All Contains expanded set of functions that estimate short term health 

effects, including functions used in U.S. EPA’s sensitivity analyses in 

RIAs, and functions specific to at-risk groups. 

 

BenMAP will show you the health effects and studies corresponding to your selections above 

in the next step. Click Continue to move on to the next step, or Back to edit previous 

selections. 

1.3.6 Step 6: Value of effects? 

In addition to quantifying population changes in health, BenMAP lets you assign monetary 

values to these changes. You can match each health effect with a valuation function 
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derived from peer-reviewed economic literature and/or extensive health-care databases of 

medical costs. Monetizing human health benefits helps express the economic value of 

improved health to society and facilitates easier comparisons of a policy’s health benefits to 

its implementation costs.   

After you select a set of health effects, you will be directed to a screen that lists all the 

individual health functions you have chosen. Here, you can review the health effect sets, 

individual health effects, and the key meta-data for each health impact function.  
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The valuation step is recommended, but optional. If you choose to skip valuation, you do not 

need to alter any default selections on the Value of Effects page. Instead, you can select the 

  button in the bottom left-hand corner of the page. 

If you would like to value your selected health effects, first choose from the valuation 

selection drop down in the upper left corner of the window. There are two drop-down 

options: 1) “Select my own value functions”, and 2) “Use EPA’s current default values”. 

 

If you choose “Use EPA’s current default values” from the valuation selection drop down, a 

valuation function will populate for all health effects that matches the current valuation 

methods utilized by EPA in their regulatory impact assessments. If you wish to change any of 

the default valuation functions populated, click on the pencil icon  at the left of the row of 

interest, click the  next to the function in the pop-up window if you wish to delete the 

selection, and choose the desired valuation function from the drop-down menu as described 

below. 

If you choose “Select my own value functions”, you will need to specify a valuation function 

for each health effect by clicking on the pencil icon  at the left of each row. A pop-up 

window will appear with the same metadata for the health impact function of interest, as 

well as a drop-down menu you can use to select a valuation function. Open the drop-down 

menu and scroll to the valuation function or functions that match the health effect and age 

range of the health impact function. Click on a valuation function to select it. You may click 
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multiple rows to select multiple valuation functions. To delete any valuation function you do 

not wish to include, click the  next to the function in the pop-up window.
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Select all the valuation functions you wish to run and click Save to exit the pop-up window 

and return to the main screen with the full list of health effects/functions. Repeat this process 

for all health effects that you wish to value.  

Once you have chosen your valuation functions, scroll to the bottom of the screen and 

choose an Aggregation Scale for the valuation of the health effects chosen. Valuation data at 

the scale chosen will be available for export once the valuation task is complete. The default 

valuation scale is County level. Click Continue to review and submit your analysis, or Back to 

edit previous selections.  

 

 

1.3.7 Step 7: Review & Submit 

On the Review and Submit screen, you will be able to review all of your selections for this 

analysis: the pollutant, pre-policy air quality surface, post-policy air quality surface(s) and 

associated population year(s), population dataset, incidence dataset, health effect set(s), 

number of health impact functions, number of valuation functions, and total number of 

tasks. Note that BenMAP treats the quantification of health impacts and the valuation of 

those impacts as separate tasks, so if you selected any valuation functions in Step 6, you will 

you see two total tasks in the Review window. Confirm that these are correct or click Back to 

edit your previous selections.  
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Enter a Task Name in the text box below the analysis summary.  You can use this name to 

identify the analysis or batch run later. If you want to save your analysis configuration as a 

template, enter a Template Name as well, and click Save Template. Saving a template 

allows you to preserve the details of your analytical setup and re-use them later. 

Click Submit Task and BenMAP will assign your task(s) to the Task Queue. A window will pop 

up that says “Your task [TASK NAME] has been submitted”. Click OK to close this window and 

let the analysis run in the background; this will also give you another opportunity to save your 

template if you wish to do so. Alternatively, click View your Tasks to be directed to the 

Manage Tasks window. This window is also accessible through the Data Center if you want 

to check on your task later. 

1.3.8 View and Export Results 

Once you have submitted your task, it is assigned to the Task Queue in the Manage Tasks 

window. If there were no pending tasks when your task was submitted, BenMAP will begin 
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running your task momentarily; otherwise, it will begin running once either the tasks ahead of 

it are completed, or when sufficient computing resources become available.  

View your active or completed tasks by clicking View your Tasks via the Review and Submit 

window or by clicking the Manage Tasks button in the Data Center. If your task is still 

pending, it will be listed in the top portion of the Manage Tasks window. You can see 

additional details about its status by clicking on the blue button next to the task name. Also 

note that each analysis that involves both quantification and valuation will be represented by 

two tasks: one for quantification and a second for the valuation step. The valuation step will 

only begin once the corresponding quantification task is completed.  
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Once the task begins running, you can click on the  button to abort the task if you 

wish to go back and revise the setup or wish to cancel for any other reason. A popup will ask if 

you wish to cancel the task, you can confirm or not. Canceling unneeded tasks will free up 

computing resources for other tasks that may be running simultaneously. 

The bottom panel of the Manage Tasks window shows all previously submitted tasks, 

including those that completed successfully and those that either were canceled or failed to 

complete successfully due to an error. Each submitted task will have a blue drop-down 

button  under the Action column at the far right. Click on this drop-down to access a 

menu that lets you either or View/Export Results to access the results of a successful 

analysis or to Delete a task and any of its associated data. A popup will display if you select 

Delete asking you to confirm your decision. 

If you click View/Export Results, a screen will load displaying a description of the task at the 

top left, including the pollutant, name of the Task (or Batch Task), Pre-policy air quality 

scenario, and time of completion. The screen allows you to choose from a dropdown to view 

results for the selected post-policy air quality scenario(s) and their associated population 

year(s), aggregated to the national level. If you only ran a task with a single post-policy 

scenario that scenario will be selected by default. 

 

The main panel of this screen displays your HIF (Health Impact Function) results or Valuation 

Results, which can be exported separately.  
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The HIF panel displays results of the analysis by health effect, age, and study, aggregated to 

the national level. This panel also provides the national, population-weighted average 

change in air quality, the number of avoided health effects, the number of exposed people, 

and the baseline incidence among the population for each health effect. You can select 

which columns are displayed by clicking the Columns drop-down menu and select any 

additional characteristics, such as race, ethnicity, and gender, that you would like to display. 

In addition, you can select the Formatted Results columns to present the results to two or 

three significant figures.  If all columns cannot be shown on screen scroll bars will appear to 

help you navigate. 
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The Valuation panel displays results of selected valuation functions aggregated to the 

national level by health effect, name of valuation study, and valuation point estimate. You 

can select which columns are displayed by clicking the Columns drop-down menu and select 

any additional characteristics, such as race, ethnicity, and gender, that you would like to 

display. If all columns cannot be shown on screen scroll bars will appear to help you navigate. 

Although BenMAP displays your results at the national level, your unaggregated health effect 

results and the valuation results at your pre-specified aggregation level have been saved to 

the BenMAP database, and you can access these data, aggregate your results to a variety of 

other spatial scales, and export the results as a .csv file. In either the HIF result tab or 

Valuation result tab, click the  button at the top right. A window will pop up with 

the task name, options to export the data on screen or all data associated with the (batch) 

task, as well as a list of available result types (e.g., health impact function results or 

valuation function results) and a list of available aggregation levels to select. Check the box 

next to the result type(s) you wish to download and any the resolution(s) of any output – the 

options currently supported are CMAQ 12km Nation, County, State, and Nation. All columns 

will be exported regardless of which ones you have selected to display at the time of export.
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CMAQ 12km Nation This shapefile grid definition contains grid cells that are roughly 12 

kilometers on each side, for use with air quality modeling data. 

County This shapefile grid definition contains county borders, for use with 

county-based population and baseline health data. 

State This shapefile grid definition contains state borders, for use in generating 

results aggregated to the state level. 

Nation This shapefile grid definition contains an outline of the contiguous United 

States, defining an overall area of interest. 

 

Click Export to download your HIF and/or valuation results. The results file(s), in .csv format, 

and the task log (a text file containing all the selections you made to generate your results) 
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will be available in your browser’s download page. The results .csv files can be opened in 

programs such as Microsoft Excel and Google Sheets.   

1.4 Conducting an Exposure Analysis 

In addition to calculating changes in health impacts, BenMAP can perform analyses that focus 

on pollutant exposures; specifically, how concentrations of air pollutants may differ across 

population subgroups. This exposure analysis produces population-weighted surface level 

concentrations of a selected pollutant at various spatial scales for the entire U.S. population 

and for U.S. population subgroups characterized by race, ethnicity, or other demographic 

factors. More details on how BenMAP performs this analysis along with examples of its 

application can be found in Section 2.2.  

The following steps guide you through a basic BenMAP exposure analysis. In this analysis, you 

will compare PM2.5 exposures across a range of U.S. population subgroups. From the Home 

screen, click Analyze Exposure to Air Pollutants. You will be directed to a new screen with a 

progress bar at the top that shows the four steps of an exposure analysis: steps shown in gray 

have yet to completed; steps shown in blue with a check mark   have been completed; and 

a step shown in blue with a pencil icon  indicates the current step.  

 

1.4.1 Step 1: What pollutant?  

In this step, you select the pollutant of concern; this is the pollutant for which BenMAP will 

estimate exposure. The tool currently supports exposure analyses for ground-level ozone 

and fine particles (<2.5 μm). Only one pollutant may be analyzed per run. Choosing a 

pollutant will determine which air quality surfaces you will be able to select later.  
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Select Fine particles (<2.5 μm) and click Continue to move on to the next step. 

1.4.2 Step 2: What air quality?  

To estimate population exposure to air pollution, BenMAP combines air quality data assigned 

to a spatial grid (i.e., an “air quality surface”) with spatially gridded population data. In this 

step, you will select a pair of air quality surfaces for BenMAP to compare. The first of these 

surfaces represents pollutant concentrations that represent the state of the world before an 

air quality-related policy or action has been implemented (Pre-policy); the second represents 

concentrations after implementing the policy or action (Post-policy). BenMAP uses 

concentration data from each of these surfaces to how exposures may differ across groups in 

each scenario. BenMAP also calculates the difference in pollutant concentrations between 

these two surfaces to assess the policy-related change in pollutant exposure experienced by 

each population group. You may select existing air quality surfaces from the BenMAP 

database or create new surfaces from your own air quality data. BenMAP can generate new 

surfaces from .csv files of air quality data (instructions for preparing your own .csv file are 

here). BenMAP currently accepts files of air quality concentrations generated from computer 

models that simulate the transport and transformation of pollutants. (Future versions will 

also accept air quality data from air quality monitor measurements).  
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BenMAP assigns air quality data to a spatial structure, where each cell contains an air quality 

concentration for your selected pollutant. These grids are characterized either by regularly 

shaped and sized cells (like those typically used by air quality models), or by irregular 

polygons representing political designations such as counties, provinces, cities, or nations. 

BenMAP assumes that the ambient pollutant concentrations assigned to a cell represent the 

exposure experienced by people living in that cell. The tool currently accepts air quality 

inputs assigned to a 12km grid, in addition to the U.S. National, State, and County level.  

If you want to use a pre-loaded air quality surface: 

Select your pre-policy air quality scenario.  

BenMAP currently contains two pre-loaded example ozone surfaces and four pre-loaded 

example PM2.5 surfaces. BenMAP will show you the surfaces that correspond to the pollutant 

you selected in Step 2.  First, select the PM Baseline Example 2032 scenario to represent the 

pre-policy (i.e., baseline) conditions of your analysis. Users may select only one pre-policy 

scenario per analysis.  

 

Metadata for the selected scenario are displayed below your selection and show information 

such as the count of grid cells and mean pollutant concentration. 
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Select your post-policy air quality scenario(s).  

Next, select the PM Policy Example 1 2032 scenario to represent the air quality conditions 

following policy implementation.  

 

To view metadata for a selected post-policy scenario, choose an option from the Post Policy 

Scenario dropdown. 
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If you want to use your own data: 

To add a custom air quality layer, click the button at the top of the screen that says Add Air 

Quality Data . A window will pop up. In this window, you will need to 

provide a name for your custom air quality layer and grid definition it uses (CMAQ 12km 

Nation, County, State, or Nation). You are also asked to provide the year of the data, its 

source, data type (Photochemical AQ model, Land Use Regression Model, Satellite, Sensor, or 

Hybrid Model), and a brief description. After entering this information, click the + icon at the 

top right to upload the air quality surface from your computer. For details on how to format 

custom air quality data files so that BenMAP recognizes them, see Section 5.2 of the user 

manual. 
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After you’ve uploaded your custom air quality layer, BenMAP will validate the surface to 

ensure it is formatted correctly. If your air quality layer passes the validation step and is 

successfully uploaded, the following pop-up message will appear. Click OK to dismiss.  

 

If there is an error with your custom air quality surface, it will not pass the validation step 

and an error message will appear. A pop-up with possible errors is shown below. 
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Other potential errors not shown here include using an unavailable pollutant or duplicating 

an existing air quality surface name. Click OK and address the listed error(s) in the input file 

you created before re-uploading.  

Once you’ve selected your pre-policy and post-policy air quality scenarios, click Continue to 

move on to the next step, or Back to edit previous selections. 

1.4.3 Step 3: Who will be exposed?  

BenMAP uses population data to understand how many people are exposed at each modeled 

or observed concentration of air pollution and can stratify exposures spatially and 

demographically. Population data are associated with a grid definition, which specifies the 

geographic areas for which the data is available (e.g., County or 12-km grid cells). The pre-

loaded population data for each grid cell are stratified by year and by age, race, ethnicity, and 

gender. The latter information helps you understand how pollution exposures may be 

distributed across subpopulations.   
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You must currently select from pre-loaded U.S. population files in BenMAP. (Future versions 

will allow users to import their own population data.) 

Population details 

Step 1. What population dataset do you want to use?  

Select your population dataset from the drop-down menu. Currently, the only option in 

BenMAP is US CMAQ 12km Nation population. 

Step 2. Select population year(s) for each post-policy air quality scenario.  

Select a year or years for your population from the drop-down menu for each of the post-

policy air quality scenarios you selected. Currently, the tool supports population years from 

2000 through 2055. Select the year 2020. 

Step 3. Which exposure functions would you like to include?  

In this step, you will choose the U.S. subpopulations for which you will be assessing exposure. 

Currently BenMAP’s pre-loaded U.S. population files come with a limited selection of 

population subgroups (future versions will allow for additional options based on user-loaded 

population datasets). The selections currently available in the dropdown menu include a 

suite of subpopulations stratified on various demographic characteristics including race, 

income, and educational attainment:  
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EPA Default Subpopulations – 

2022 Rulemaking 

Includes only groups evaluated by U.S. EPA in its regulatory 

analyses of air rules in 2022, which focused on subgroup 

definitions for ethnicity, race, educational attainment, poverty 

status, age, and sex.  

All Available Options Includes all groups evaluated by U.S. EPA in its regulatory 

analyses of air rules in 2022 as well as subgroup definitions for 

Blue Collar workers, insured status, different degrees of 

experienced poverty (2x above or below poverty lines), and 

ability to speak English. 

For more detail on the subgroups available, see Section 2.2.   

Choose EPA Default Subpopulations – 2022 Rulemaking and click Continue to move on to 

the next step, or Back to edit previous selections.  

 

1.4.4 Step 4: Review & Submit 

On the Review and Submit screen, you will be able to review your selections for this analysis: 

the pollutant, pre-policy air quality surface, post-policy air quality surface(s) and associated 
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population year(s), population dataset, exposure function group, and reference population.  

Confirm that these are correct or click Back to edit your previous selections.  

 

Enter a Task Name in the text box below the analysis summary.  You can use this name to 

identify the analysis or batch run later. If you want to save your analysis configuration as a 

template, enter a Template Name as well, and click Save Template. Saving a template 

allows you to preserve the details of your analytical setup and re-use it later. 

Click Submit Task and BenMAP will assign your task(s) to the Task Queue. A window will pop 

up that says “Your task [TASK NAME] has been submitted”. Click OK to close this window and 

let the analysis run in the background or click View your Tasks to be directed to the Manage 

Tasks window (also available through the Data Center if you want to check on your task 

later). 

1.4.5 View and Export Results 

Just as for a health impact analysis, once you have submitted your task, it is assigned to the 

Task Queue in the Manage Tasks window. If there were no pending tasks when your task was 
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submitted, BenMAP will begin running your task momentarily; otherwise, it will begin running 

once either the tasks ahead of it are completed, or sufficient computing resources become 

available.  

 

Once the task begins running, you can click on the  button to abort the task if you 

wish to go back and revise the setup or wish to cancel for any other reason. A popup will ask if 

you wish to cancel the task, you can confirm or not. Canceling unneeded tasks will free up 

computing resources for other tasks that may be running simultaneously. 

Once a task is completed you will be able to click View/Export Results. A screen will load 

displaying a description of the task at the top left, including the pollutant, name of the Task, 

Pre- and Post-policy air quality scenarios, and time of completion. The screen allows you to 

choose from a dropdown to view results for the selected post-policy air quality scenario(s) 

and their associated population year(s).  
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The “Exposure Results” panel displays results of the analysis by population group, age, pre-

policy concentration and post-policy concentration, change in air quality, and population 

exposed. You can select which columns are displayed by clicking the Columns drop-down 

menu and select any additional characteristics, such as race, ethnicity, and gender, that you 

would like to display. If all columns cannot be shown on screen scroll bars will appear to help 

you navigate. 

Just like health impact analysis results, your “raw,” unaggregated results have been saved to 

the BenMAP database, and you can access these data, aggregate your results to a variety of 

spatial scales, and export the results as a .csv file. Click the  button at the top 

right. A window will pop up with the task name, as well as a list of available aggregation levels 

to select. Check the box next to any grid levels you wish to aggregate to – the options 

currently supported are CMAQ 12km Nation, County, State, and Nation.  
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Chapter 2  
Introduction to BenMAP 
Analyses 
 

 

In this chapter, find… 
• An overview of the tool. 
• An overview of health benefits analysis. 
• An overview of exposure analysis. 
• Frequently asked questions. 
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This chapter of the User Manual will introduce the two types of analyses users can perform 

with web-based BenMAP tool. The first, Heath Benefits Assessment, quantifies the impact of 

changes in air pollutant concentrations in terms of changes in premature mortality and 

morbidity in exposed populations; it also enables users to express those impacts in monetary 

terms, if desired. The second type of analysis, Exposure Assessment, focuses on 

characterizing the pollutant concentrations experienced by a population, and how those 

exposures may differ across different subgroups within that population. 

2.1 Introduction to Health Benefits Assessment  

The environmental Benefits Mapping and Analysis Program (BenMAP) is a powerful yet easy-

to-use tool for estimating the number of cases and associated economic value of health 

impacts resulting from changes in air pollution concentrations. The open-source BenMAP 

web tool replaces the desktop version of the program (BenMAP-CE) that the U.S. 

Environmental Protection Agency (U.S. EPA) first developed in 2003 to analyze national-scale 

air quality policies. Previous analyses include health benefits assessments for the National 

Ambient Air Quality Standards (NAAQS) for Particulate Matter (2006, 2012) and Ozone 

(2008, 2010) as well as the Revised Cross-State Air Pollution Rule (2021).   

U.S. EPA and its partners designed BenMAP to serve the analytical needs of a range of users, 

including scientists, policy analysts, and decision makers. Most users apply the BenMAP tool 

to answer one of two types of questions: 

1. What are the human health and economic benefits associated with a policy changing air 

quality? 

2. What is the human health burden attributable to total air pollution levels? 

https://www.epa.gov/benmap
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2.1.1 Overview of BenMAP & Benefits Assessment 

The BenMAP program estimates the human health impacts and economic value of air quality 

changes. That is — BenMAP calculates the human health benefits associated with air quality 

changes. Such analyses are a critical component of air quality policy assessments. As such, a 

variety of federal, state and local air pollution officials have used BenMAP to inform air quality 

management decisions.1   

BenMAP estimates benefits from improvements in human health such as reductions in the 

risk of premature death, heart attacks, and other adverse health effects. Non-health benefits 

of reducing air pollution (i.e., visibility and ecosystem effects) are not quantified in the 

current version of BenMAP. After estimating the changes in the incidence of adverse health 

effects, BenMAP calculates the monetary benefits associated with those reductions. We 

provide a high-level overview of this process below. Additional details on the health effect 

quantification and valuation steps can be found in Chapters 3 and 4, respectively. 

How does BenMAP estimate human health effects?   

First, BenMAP determines the change in ambient air pollution using user-specified air quality 

data. Because BenMAP does not model air quality changes, you must input these data into 

BenMAP. Next, BenMAP applies a health impact function or a concentration-response (C-R) 

function to pollution concentration changes in order to calculate the corresponding health 

effect changes. HIFs are derived from epidemiology studies that calculate effect estimates 

which relate a change in pollutant concentration to a health impact, alternatively called a 

change in the incidence of health outcomes. Effect estimates are combined with the change 

in pollutant concentration, population, and baseline incidence to create a HIF.  Equation 2-1 

 
 

 
1 For a list of peer-reviewed articles that used the BenMAP tool, see: www.epa.gov/benmap 
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shows a typical functional form in which Δ𝑌𝑌 is the change in incidence or health effect, 𝑌𝑌0 is 

the baseline incidence, β is the effect estimate, Δconc is the change in pollutant 

concentration, and 𝑝𝑝𝑝𝑝𝑝𝑝 is the exposed population. You can specify their preferred HIFs in 

BenMAP.  This calculation is done for each location in the area of study.  Figure 2-1 illustrates 

a potential calculation, showing data over a specific area of study which are combined in an 

HIF to estimate a health impact.  

Equation 2-1 

Δ𝑌𝑌 = 𝑌𝑌0�1 − 𝑒𝑒−βΔconc� ∗ 𝑝𝑝𝑝𝑝𝑝𝑝 

 

Figure 2-1 Calculating a change in health outcomes 

 

• Population. The exposed population is the number of people affected by the air 

pollution change. The Census Bureau is a good source for this information. In addition, 

private companies may collect this information and offer it for sale.  
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• Pollutant change. The air quality change is the difference between the starting air 

pollution level (i.e., the pre-policy scenario) and the air pollution level after some 

change, such as a new regulation (i.e., the post-policy scenario).   

• Baseline Incidence. The baseline Incidence is the probability that a person will suffer 

a specified adverse health effect in a given population over a given period of time. 

This value should represent the incidence of health outcomes in the population before 

changes in air quality are considered. Baseline incidences and other health data are 

typically collected by the government. The World Health Organization is another good 

source for baseline incidence data.2 Additionally, the Global Burden of Disease (BGD) 

query site can be used to find baseline incidence data.3 

• Effect estimate. The effect estimate approximates the percentage change in the risk 

of an adverse health effect due to a one unit change in ambient air pollution (typically 

1 µg/m3 or 1 ppm). Epidemiological studies are a good source for effect estimates.   

How does BenMAP estimate the economic value of human health effects?   

BenMAP calculates the economic value of avoided human health effects by multiplying the 

quantity of these effects by an estimate of the economic value per case (see Figure 2-2 as well 

as Chapter 4 for details):   

Economic Value = Health Impact * Statistical Unit Value of Health Impact 

 
 

 
2 The World Health Organization is a good source for international health data, see: http://www.who.int. 
3 The GBD query site is available at: https://vizhub.healthdata.org/gbd-results/.  

http://www.who.int/
https://vizhub.healthdata.org/gbd-results/
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Figure 2-2 Estimating the Economic Value of Human Health Effects 

 

There are several different economic valuation metrics that can be used when calculating the 

value of the health effect. For example, the value of an avoided premature mortality is 

generally calculated using the Value of Statistical Life (VSL) – the average monetary value 

that a group of people are willing to pay to slightly reduce the risk of premature death in the 

population. For other health effects, the costs of the illness may be the only valuation data 

available. Cost of illness (COI) measures may include some or all of the direct medical costs, 

indirect medical costs, lost wages, caregiving costs, and other incurred costs due to the 

illness.  COI measures do not measure economic utility. The BenMAP database includes 

several different functions for VSL and valuation functions for other health effects for you to 

choose, or you can use the U.S. EPA’s approach for quantifying and valuing air pollution 

effects.4 

Please note that BenMAP does not have air quality modeling capabilities; you must provide 

externally created air quality data. 

 
 

 
4 See https://www.epa.gov/benmap/benmap-community-edition. 

https://www.epa.gov/benmap/benmap-community-edition
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What types of data can you use within BenMAP? 

Table 2-1 lists the 10 types of possible input datasets that you can use within BenMAP and 

indicates which types of data are needed to perform certain analyses. These components are 

built into the web tool; the current version of the tool also supports user-uploaded air quality 

model data. Future versions will support additional custom user data inputs. 

Table 2-1 BenMAP Data Elements 

Dataset Type Required to Estimate 
Health Impacts 

Required to Quantify 
Economic Impacts 

Required to 
Quantify Exposure 

Grid Definitions    

Pollutants    

Modeled Air Quality Data    

Incidence/Prevalence Rates    

Population Datasets    

Health Impact Functions    

Variable Datasets*    

Inflation Datasets    

Valuation Functions    

Income Growth Adjustments    
*This includes data tables of socio-economic and demographic data used to support valuation of health impacts as well as 
the assessment of exposure and impacts stratified by indicators of poverty, education, and other factors.   

Analysts can use BenMAP to:  

• Compare benefits associated with various regulatory programs;  

• Characterize the distribution of health impacts among population subgroups;  

• Estimate health impacts and economic values of existing air pollution concentrations;  

• Estimate the health benefits of alternative ambient air quality standards; and 

• Perform sensitivity analyses of health or valuation functions, or of other inputs. 
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Example Applications  

Analysts have used BenMAP to investigate a variety of policy questions such as: 

• What is the current health burden from PM2.5 levels in Addis Ababa? 

• How large are the economic benefits of reduced maternal exposure to fine particulate 

matter? 

• What are the future health impacts of wildfire smoke under alternative climate scenarios? 

• What are the Environmental Justice implications of alternative air quality strategies in 

Detroit, MI? 

• How large are tree and forest effects on air quality and human health? 

• What are the health benefits from vehicular pollution control strategies? 

 

2.2 Introduction to Exposure Analysis  

Air pollution concentrations vary spatially, as does population. The air pollutant exposure 

experienced by a given subpopulation is a function, in part, of the pollution levels observed in 

the areas where this subpopulation lives. If areas of high population density for the subgroup 

overlap areas of high pollutant concentrations, this subgroup will experience higher exposure 

than a subgroup that tends to reside in areas where pollutant concentrations are lower. 

BenMAP can use spatial data mapping, pollutant concentrations, and population to assess 

this overlap, with the result being an estimate of population-weighted exposure 

concentration values for a given pollutant. Outputs from this exposure analysis can be used in 

visualization tools, or as a method with which to investigate potential differences in pollutant 

concentrations across demographic groups. For example, the output of this analysis allows 

the user to see the average concentration of PM2.5 exposure experienced by Black, Asian, or 

Native American populations, and evaluate how these values compare to the average PM2.5 

concentration exposure experienced by the total U.S. population. 
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Environmental Justice studies often seek to evaluate potential disproportionate effects of 

pollution across population subgroups. Especially for policy implementation or large 

government actions, the following questions are typically asked: 

1. Are there disproportionate air pollutant health effects (e.g., mortality) under 
baseline/current levels?  

2. Are there disproportionate air pollutant health effects under illustrative alternative 
levels?  

3. Are disparities in air pollutant health effects created, exacerbated, or mitigated under 
illustrative alternative levels as compared to the baseline?  

By modeling air quality surfaces over population grids whose data can be separated into 

population subgroups, BenMAP analyses can help to answer the above questions by 

showcasing disparities across demographics and evaluating how those disparities behave 

under different implementation scenarios. For the 2022 NAAQS PM2.5 Standard 

Reconsideration, U.S. EPA employed an analysis of this kind to demonstrate how PM2.5 

exposures were distributed across population subgroups in the U.S., and how disparities 

fluctuated under the proposed standard alternatives. Figure 2-3 shows an exposure analysis 

heat map from the reconsideration document, which displays the different national 

exposures to PM2.5 experienced across different population subgroups.5 While BenMAP does 

not yet generate heat-maps of this kind directly, the data from health exposure analyses can 

be used for similar evaluations and communication. 

 
 

 
5 2022 Regulatory Impact Analysis for the Proposed Reconsideration of the National Ambient Air Quality Standards 
for Particulate Matter; EPA-452/P-22-001. Figure 6-1 
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Figure 2-3 Example Exposure Analysis Heat Map 

 

How does BenMAP calculate exposure?   

The steps for an exposure analysis are similar in nature to the health impact analysis but omit 

the calculation of changes in incidence and valuation. Instead, the exposure analysis takes a 

selected air quality surface and evaluates how air pollutant concentrations overlap with 

population data, weighting the concentrations for a particular region based on the spatial 

distributions of population subgroups. The output from these analyses are average surface 

level concentrations experienced by a population as a whole and by selected subpopulations. 

Figure 2-4 illustrates a potential calculation, showing how population data over a specific 

area of study are combined with an air pollution surface. Air pollution surfaces can either 

provide a single snapshot of pollution distribution across a population or show changes in the 

population exposures between a baseline and implementation scenario. 
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Figure 2-4 Calculating a Population Exposure 

 

• Population. The exposed population is the number of people affected by the air 

pollution change. When subpopulations are available   

• Pollutant change. The air quality change is the difference between the starting air 

pollution level (i.e., the pre-policy scenario) and the air pollution level after some 

change, such as a new regulation (i.e., the post-policy scenario).   

 

What types of population sub-groups are available? 

Table 2-2 and Table 2-3 show the different population subgroups within the Population 

Exposure Functions that are currently available within the present version of the BenMAP web 

tool. 
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Table 2-2 EPA Default Sub-Populations – 2022 Rulemaking  

Population Groups 

Ethnicity Hispanic; Non-Hispanic 

Race Asian; American Indian; Black; White 

Educational Attainment High school degree or higher; No high school degree 

Poverty Status Above the poverty line; Below the poverty line 

Age Children (0-17); Adults (18-64); Older Adults (65-99) 

Sex Female; Male 

 

Table 2-3 All Available Options 

 

Population Groups 

Ethnicity Hispanic; Non-Hispanic 

Race Asian; American Indian; Black; White 

Educational Attainment High school degree or higher (Age >24); 
No high school degree (Age >24) 

Poverty Status Above the poverty line; 2x Above the poverty line 
Below the poverty line; 2x Below the poverty line 

Age Children (0-17); Adults (18-64); Older Adults (65-99) 

Sex Female; Male 

Employment Type Blue Collar Workers 

No Insurance Age 1-17; Age 18-39; Age 40-64; Age <65, 

Speaks English Not at all, Not well, Well, Very well 
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2.3 Browser and Computer Requirements 

• We recommend using BenMAP with the latest release of any of the following desktop 

browsers, with cookies and JavaScript enabled (mobile browsers not supported at 

this time): 

o Google Chrome 

o Firefox 

o Safari 

o Microsoft Edge 

• Microsoft Excel or other spreadsheet program (to read exported .csv files and prepare 

air quality input files)  

2.4 Contacts for Comments, Questions, and Bug 
Reporting 

If you have comments and questions, or to report a bug, please send U.S. EPA a message at 

the BenMAP website: https://www.epa.gov/benmap/forms/contact-us-about-benmap, or 

email benmap@epa.gov.  

2.5 Frequently Asked Questions 

Is BenMAP free? Is there a Terms of Use agreement? Are there any restrictions on using 

BenMAP? 

BenMAP is free. There is no Terms of Use agreement, though new users must register with 

U.S. EPA to obtain access. The only restriction is that individuals are limited to storing the 

output of 10 BenMAP runs at any time on the system. You may download results to store 

locally and delete them from the web database to free up space to conduct additional runs.  

https://www.epa.gov/benmap/forms/contact-us-about-benmap
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How do I know which version of BenMAP I am using? How do I know if I have the most 

current version of BenMAP?  

You are automatically using the most up-to-date version of BenMAP at 

https://benmap.epa.gov. The current version number is shown in the upper right portion of 

the screen, beneath your username. The version number for any given run is also indicated at 

the beginning of the Task Log exported with every result download.   

Why do I get different results than someone else?  

There are many possible reasons why your results might differ from someone else's results. 

One good place to start is reviewing the Task Log. With the Task Log you can examine the 

assumptions and selections that you have made to generate your results and compare your 

selections with those made in another analysis. You can also check and compare BenMAP 

version numbers and database numbers, which are reported at the beginning of each Task 

Log. 

Does BenMAP estimate effects of air pollution that are not related to human health (i.e., 

ecological effects)? 

No. BenMAP does not currently have impact functions to estimate other than human health 

effects. In principle, it would be possible to estimate ecological effects, as BenMAP is 

designed to combine different types of geographically variable data. To do so, you would 

need to develop and load data and impact functions appropriate to estimating ecological 

effects of interest.  

Where can I find the source code for BenMAP? 

BenMAP is an open-source program and the development team welcomes contributions and 

scrutiny from the user community. If you are interested in receiving a current copy of the 

https://benmap.epa.gov/
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source code, see https://github.com/BenMAPCE/BenCloudServer and 

https://github.com/BenMAPCE/BenCloudApp.  

How does the web tool differ from the desktop BenMAP-CE tool? 

The user interface of the web tool is fundamentally different from the desktop BenMAP-CE 

program, though both versions are used for the same purpose. Additionally, the desktop 

BenMAP-CE program has advanced functionality that has not yet been incorporated into the 

web tool but is expected in future versions. Future functionality includes pooling, mapping, 

and additional support for custom inputs. 

Can I still use the desktop version of BenMAP? 

Yes, the desktop tool is still fully functional and available for download at 

https://www.epa.gov/benmap. However, it is expected that the desktop tool will eventually 

no longer be supported by U.S. EPA. Updates will be provided to the BenMAP user community 

as this date approaches.  

 

 

https://github.com/BenMAPCE/BenCloudServer
https://github.com/BenMAPCE/BenCloudApp
https://www.epa.gov/benmap
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Chapter 3  
Estimating Health Incidence 
 

 

In this chapter, find… 
• A description of how BenMAP estimates the incidence of 

health outcomes. 
• The source of functions relating air pollutant exposures 

to health effects. 
• The types of data needed to estimate air quality-related 

changes in health incidence. 
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3.1 Introduction to Estimating Health Incidence Changes  

Health incidence refers to the counts of new cases of an adverse health effect in a population 

over a specified period of time (e.g., a year). One of BenMAP’s primary functions is to estimate 

changes in health incidence that result from changes in air pollutant concentrations. In 

order to generate these estimates, you will need to create and execute a BenMAP 

configuration that specifies all the details needed for an incidence analysis. These include:   

• The pollutant you want to evaluate; 

• The pollutant concentrations in two scenarios you wish to compare, typically referred 

to as the pre-policy and post-policy scenarios;  

• The year for the analysis;  

• The population dataset for the analysis; 

•  The health effects and health impact functions to be used; and 

• The baseline rate of incidence for those health impacts in the specified population. 

After entering this information, you may opt to save your configuration choices as a template 

to reuse in the future (see box). 

BenMAP gives you flexibility in creating, editing, 

and saving configuration data. From the home 

screen, you can specify the details of a new run 

manually, open an existing template and run it as 

is, or open a template that you then modify to 

create a new run and/or template. If this is your 

first time running BenMAP or you have not saved a 

template from previous runs, you will need to 

click the New Analysis 

button. 

Fundamental Concept: Templates 

A Template includes all the user-specified 
data and choices for a BenMAP run. This 
includes the specified pollutant, scale of 
air quality grids, air quality surfaces, 
population data, health impact 
functions, and baseline incidence 
datasets. Templates may be saved to your 
user account prior to running a 
configuration to allow you to easily re-run 
or adjust a past analysis without needing 
to enter all your previous choices.  You can 
access, rename, or delete your templates 
from the Home screen.   
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To load a configuration you saved previously, select a previously saved configuration from 

the main page below “Start from a template”. From this page, you are also able to rename or 

delete saved templates.  

 

The steps to calculating health impacts are displayed in Figure 3-1 and described in detail 

throughout the rest of this chapter. 

Figure 3-1 Steps to Calculating Health Impacts 

 

3.2 Pollutant Change 

The Pre-Policy file contains the air quality concentrations for the conditions that exist either 

prior to or without any change in existing policy. The Post-Policy file specifies the air quality 

concentrations assuming that some type of policy or change has been implemented. The air 

quality files should contain concentration data for the same pollutant, using the same 

metrics (e.g., daily 24-hour average, 8-hour max) and the same units, such as micrograms 

per cubic meter (µg/m3) or parts per billion (ppb). 
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The air quality files must also be mapped at the same spatial scale. If you choose a particular 

Grid Type (e.g., County) for the Pre-Policy file, then the same grid type must be used in the 

Post-Policy file.  

Fundamental Concept: Pre-Policy and Post-Policy Scenarios 

BenMAP requires both a Pre-Policy Scenario air quality surface and Post-Policy Scenario air 
quality surface to estimate the effects of a change in air quality (Delta).  

• The Pre-Policy Scenario characterizes the air quality levels observed or expected in the 
absence of the policy change you are evaluating. It is sometimes referred to as “Business as 
Usual.” The Pre-Policy scenario is usually considered to be the reference scenario against which 
to compare a potential scenario characterized by the implementation of regulations.  

• The Post-Policy Scenario in BenMAP is the scenario in which emissions from one or more 
source sectors are changed (increased or decreased) from the Pre-Policy scenario. The Post-
Policy scenario usually represents expected air quality levels after a new regulation or set of 
regulations has been implemented.  

The air quality Delta is the change in air pollution between the Pre-Policy air quality grid and the 
Post-Policy air quality grid (Pre-Policy minus Post-Policy). A positive Delta indicates that air 
pollution has decreased (i.e., air quality has improved in the post-policy scenario compared to the 
pre-policy scenario). A negative Delta indicates that air pollution has increased, and is worse for 
human health . BenMAP uses the air quality Delta as the input to the health impact function. 

 

In future versions of the tool, the Pollutant specified in the air quality grids will determine the 

suite of Health Impact Functions available for the configuration. Only functions associated 

with the specified Pollutant will be available for the configuration. Furthermore, if only 

certain Metrics associated with the pollutant are present in the air quality grids, Health 

Impact Functions associated with those Metrics will show a notification that the air quality 

surface does not provide the metric specified in the health impact function.  Currently, you 

may select any suite of Health Impact Functions, regardless of the selected pollutant. 
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3.3 Population 

The population data is used to estimate population exposure and in turn any adverse health 

effects associated with a change in air pollution. BenMAP allows you to specify race, 

ethnicity, gender, and age of the population, as well as the year of the population estimate. 

The basis of U.S. population estimates in BenMAP are 2010 Census population counts. Future 

years are projected using a 2015 source (Woods and Poole) that estimates population 

through 2050. The rate of growth from 2045 to 2050 is then applied to the 2050 to 2055 period 

to estimate 2055 population. 

Population data loaded into BenMAP must be associated with a Population Configuration, 

which defines the races, ethnicities, genders, and age ranges present in the data. Race, 

ethnicity, and gender are unique text values representing population subgroups (e.g., 

“Asian”, or “Female”). Age ranges are defined 

by integer values for starting age and ending 

age (inclusive), and a unique text value 

representing the name of the age range. For 

example, ‘0TO1’ might be used as a name for 

the age range defined by a start age of zero 

and an end age of one, thus consisting of 

infants through the first twelve months of life 

and all one-year-old infants. The population 

data should contain counts for all 

combinations of race, ethnicity, gender, and 

age range specified in the associated 

population configuration.  

Population data must also be associated with 

a grid definition which specifies the 

Fundamental Concept: Population 
Configuration 

BenMAP requires population data in order to 
estimate the adverse health effects associated 
with a change in air pollution. Population data 
may be stratified by age, sex, race, and/or 
ethnicity. The population configuration is a  
template that specifies the categories into 
which your population data are organized – 
specifically, the race, ethnicity, gender, and 
age group subdivisions present in the 
population data. Detailed population data 
allow you to more accurately estimate health 
impacts by better estimating who is exposed 
and better aligning your data with the study 
populations of population health studies. It 
also allows you to estimate and report 
benefits by age group, sex, race and/or 
ethnicity (e.g., asthma symptoms in African 
American males aged 5-17) that may be useful 
to support environmental justice analyses. 
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geographic areas for which the data are available. If population data are available for 

multiple grid definitions (cities and neighborhoods, for example), you can choose to use 

different sets of population data for different analyses.  

BenMAP can also estimate populations for grid definitions for which no population data are 

available by developing area-weighted crosswalks with grid definitions for which data are 

available. 

3.4 Baseline Incidence 

Fundamental Concepts: Incidence and Prevalence 

Incidence is a measure of the total number of new occurrences of an adverse health impact in a 
geographic area over time. The incidence rate is the average number of health effects (e.g., 
respiratory hospital admissions) per person per unit of time, typically a day or a year. The incidence 
rate must be expressed at the same time scale as the specified by the health impact function. For 
example, a health impact function quantifying day-to-day changes in premature death requires a 
daily mortality rate. The baseline incidence rate, also called the background incidence rate, is 
the incidence of a given adverse effect due to all causes including air pollution. BenMAP typically 
estimates and reports benefits as the change in incidence between the Baseline and Control 
scenarios, (e.g., the number of avoided asthma Emergency Department visits).  

The prevalence rate is the percentage of individuals in a given population at a given point in time 
who are experiencing or have been diagnosed with a given health condition (e.g., the prevalence of 
asthmatics among children 0 – 17). It may be required for certain health impact functions, such as 
those that focus on asthmatics or other groups for which an existing health condition may make 
them particularly vulnerable to the health effect being studied. 

Most C-R functions, such as those developed from log-linear or logistic risk models, estimate 

the percent change in a health effect associated with a specified pollutant concentration 

change. In other words, the absolute effect of air pollution on a specific health effect depends 

in part on the rate of occurrence of that effect in the exposed population in the baseline. 

Therefore, most of the HIFs in BenMAP require the baseline incidence rates (and in some 

cases the prevalence rate) of the adverse health effect as inputs.  
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The incidence rate can be expressed as the number of health effects per person in the 

population per unit of time, and the prevalence rate is the percentage of people that have 

been diagnosed with a particular illness or condition at a given point in time. For example, in 

2006-2008, the incidence rate for new asthma diagnoses among children was estimated by 

researchers to be 1.2 cases per 100 children per year. A recent estimate of the prevalence rate 

of asthma (measuring the percentage of the population that is already asthmatic) is 7.5 

percent of the total population.6,7  

NOTE: For both incidence and prevalence rates, BenMAP allows you to apply rates that vary 

by race, ethnicity, gender, and age group. BenMAP supports multiple sets of incidence and 

prevalence rates if the rates differ by year or by grid definition.  

3.5 Health Impact Functions 

Health impact functions relate a change in the concentration of a pollutant to a change in 

the incidence of a health effect (e.g., premature mortality or work-loss days). It is typically 

derived from the estimated relationship between the concentration of a pollutant and the  

 
 

 
6 Example incidence rate from Winer, RA, Qin, X, Harrington, T, Moorman, J, and Zahran, H. 2012. Asthma incidence 
among children and adults: findings from the Behavioral Risk Factor Surveillance System and asthma call-back survey 
– United States, 2006-2008. J Asthma 49(1): 16-22. 
7 Prevalence rate from 2018 National Health Interview Survey (NHIS) data, available at 
https://www.cdc.gov/asthma/nhis/2018/table4-1.htm 

https://www.cdc.gov/asthma/nhis/2018/table4-1.htm
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adverse health effects suffered by a given 

population in an epidemiology study. For 

example, the pollutant concentration being 

measured may be annual fine particulate matter 

(PM2.5), and the population response may be 

yearly deaths from all causes. For the purposes of 

estimating health benefits, the health impact 

function itself describes the relationship between 

the change in concentration of the pollutant, and 

the corresponding change in the population-

health response. We may want to know, for 

example, if the concentration of PM2.5 is reduced 

by 10 µg/m3, how many premature deaths will be 

avoided? 

To estimate changes in health incidence, the first 

step is to calculate the change in pollution 

concentrations for a particular policy scenario, 

such as an air quality improvement produced by a 

set of emissions controls. The concentration 

change in a pollutant is the increment between 

the pre-policy scenario, which could represent 

current conditions or a best estimate of future 

conditions based on “business-as-usual,” and the 

Fundamental Concepts: Health  
Impact Function and Concentration-
Response Function 

A health impact function calculates the 
change in the number of adverse health 
effects ∆E associated with a change in air 
quality ∆Q. The inputs to a health impact 
function include the change in air quality 
concentration for a pollutant (using a 
specified metric such as annual 
24HourMean); the size of the affected 
population (of specified age, race and 
ethnicity); the baseline incidence rate of 
the adverse health effect; and an effect 
coefficient derived from epidemiological 
studies. 

The coefficient for the health impact 
function is known as Beta (ß) and is 
derived from epidemiological studies. The 
value of ß typically represents the percent 
change in a given adverse health impact 
per unit change in pollutant 
concentration. 

Health impact functions are constructed 
using hazard ratios (HR), which estimate 
the relationship between the likelihood of 
adverse health effects as a function of 
concentration of an air pollutant. The 
terms C-R function and health impact 
function are often used interchangeably. 
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post-policy scenario that reflects the impacts of the expected pollution control actions.8 A 

spatial grid that maps each of these changes, a gridded population dataset, and local data on 

current baseline health rates are then fed into health impact functions to generate a map 

of the resulting changes in health effects (i.e., health incidence) that can be attributed to the 

changes in air pollution. These functions are based on epidemiological studies and are 

selected by you. Typically, the positive results from applications of these functions indicate a 

decrease in health incidence (e.g., the decrease in asthma, mortality) resulting from a 

decrease in air pollution. 

3.5.1 Evaluating Sets of Health Effects 

BenMAP currently includes a broad range of health impact functions to evaluate, organized 

into groups by type of health effect called sets. These sets are described in Table 3-1. 

 
 

 
8 You can also design the scenarios to look retrospectively at past pollution control efforts, where the post-policy  
scenario represents current conditions and the pre-policy represents a hypothetical counterfactual scenario that 
projects the likely air quality based on historical emissions rates and expected emissions growth in the absence of 
those historical strategies and controls.  
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Table 3-1 Description of Health Effect Sets 

Premature Death – 

Primary 

Contains functions that estimate changes in premature death 

attributable to the air pollutant. These are the studies judged by U.S. 

EPA to be most appropriate to use for its primary benefits results when 

conducting major national regulatory impact analyses. 

Premature Death – All Contains an expanded set of functions for estimating premature 

deaths, including functions used in U.S. EPA’s sensitivity analyses in 

RIAs, and functions specific to at-risk groups. 

Chronic Effects – All Contains functions that estimate longer-term health conditions, e.g., 

new cases of asthma. These are the studies judged by U.S. EPA to be 

most appropriate to use for its primary benefits results when 

conducting major national regulatory impact analyses. 

Acute Effects – Primary Contains functions that estimate short-term health effects, e.g., 

respiratory emergency department (ED) visits. These are the studies 

judged by U.S. EPA to be most appropriate to use for its primary 

benefits results when conducting major national regulatory impact 

analyses. 

Acute Effects – All Contains expanded set of functions that estimate short term health 

effects, including functions used in U.S. EPA’s sensitivity analyses in 

RIAs, and functions specific to at-risk groups. 

 

3.5.2 Evaluating Individual Health Effects 

Future versions of the tool will allow you to select individual health effects and health 

impact functions to evaluate, and this documentation will be updated. 
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3.5.3 Details on Health Impact Functions 

The complete list of health effects currently available in BenMAP is presented in Table 3-2. 

Health effects that are also included in the “Primary” health effect sets are marked with a ü. 

Table 3-2 Health Effects in BenMAP 

Health Effect Set Pollutant Primary? Health Effect 

Premature Death – All 

PM2.5  Mortality, All Cause 

Ozone  Mortality, All Cause 

Ozone  Mortality, Respiratory 

Chronic Effects - All 

PM2.5  Acute Myocardial Infarction, Nonfatal 

PM2.5  Hospital Admissions, Alzheimer’s Disease 

PM2.5  Hospital Admissions, Parkinson’s Disease 

PM2.5  Incidence, Out of Hospital Cardiac Arrest 

PM2.5  Incidence, Stroke 

PM2.5  Incidence, Asthma 

PM2.5  Incidence, Hay Fever/Rhinitis 

PM2.5  Incidence, Lung Cancer 

Ozone  Incidence, Asthma 

Ozone  Incidence, Hay Fever/Rhinitis 

Acute Effects - All 

PM2.5  Minor Restricted Activity Days 

PM2.5  Asthma Symptoms, Albuterol Use 

PM2.5  Emergency Hospital Admissions, All Respiratory 

PM2.5  ER Visits, All Cardiac Outcomes 

PM2.5  ER Visits, Respiratory 

PM2.5  ER Visits, Asthma 

PM2.5  Hospital Admissions, All Cardiac Outcomes 

PM2.5 
 Hospital Admissions, Cardio-, Cerebro- and Peripheral Vascular 

Disease 

PM2.5  Hospital Admissions, All Respiratory* 

PM2.5  Hospital Admissions, Respiratory -1* 

PM2.5  Hospital Admissions, Respiratory -2* 

PM2.5  Work Loss Days 

Ozone  Minor Restricted Activity Days 

Ozone  Asthma Symptoms, Chest Tightness 

Ozone  Asthma Symptoms, Cough 
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Health Effect Set Pollutant Primary? Health Effect 

Ozone  Asthma Symptoms, Shortness of Breath 

Ozone  Asthma Symptoms, Wheeze 

Ozone  ER Visits, Respiratory 

Ozone  ER Visits, Asthma 

Ozone  Hospital Admissions, All Respiratory 

Ozone  Hospital Admissions, Lower Respiratory Infection 

Ozone  School Loss Days, All Cause 

Results for Regulatory 
Analysis 

Ozone  Minor Restricted Activity Days 

Ozone  Asthma Symptoms, Chest Tightness 

Ozone  Asthma Symptoms, Cough 

Ozone  Asthma Symptoms, Shortness of Breath 

Ozone  Asthma Symptoms, Wheeze 

Ozone  ER Visits, Respiratory 

Ozone  Hospital Admissions, All Respiratory 

Ozone  Incidence, Asthma 

Ozone  Incidence, Hay Fever/Rhinitis 

Ozone  Mortality, Respiratory 

Ozone  School Loss Days, All Cause 

* Respiratory hospital admissions health impact functions evaluate different subsets of respiratory effects and are named 
accordingly to correspond with associated baseline incidence values. For more information, see section D.2 of Appendix D. 

More information about individual health impact functions is displayed in the web tool 

under Step 6: Value of Effects, shown below. 

 

Additionally, details are reported in the task log when you export results. Further information 

on the functions and underlying studies is available in Appendices E and F of this user 

manual. 
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Chapter 4  
Valuation and Discounting 
 

 

In this chapter, find… 
• Introduction to health benefit valuation. 
• How to value changes in mortality risks. 
• Overview of discounting and income growth. 

  



Chapter 4 – Valuation and Discounting 

 
BenMAP User Manual v0.5  April 2024 

4-ii 

Chapter 4 Table of Contents 

4.1 Overview of Economic Valuation ................................................................................................... 4-1 

4.2 Monetizing Health Benefits ............................................................................................................ 4-2 

4.3 Valuing Reductions in Premature Mortality ................................................................................. 4-4 

4.4 Overview of Discounting ................................................................................................................ 4-5 

4.5 Valuing Incidence Results ............................................................................................................ 4-13 
4.5.1 How to Specify Valuation Functions in BenMAP .............................................................. 4-13 
4.5.2 Details on Valuation Functions ......................................................................................... 4-14 
4.5.3 Default EPA Regulatory Use Valuation Functions ............................................................ 4-16 

4.6 Currency Year and Income Growth ............................................................................................. 4-17 

 
 



Chapter 4 – Valuation and Discounting 

 
BenMAP User Manual v0.5  April 2024 

4-1 

4.1 Overview of Economic Valuation 

In conducting valuation, the program estimates the economic value of the cases of premature 

death and illness described in the previous chapter.” In the example below, we discuss how 

monetary values for health effects are estimated using U.S. based values. We also provide a 

brief introduction to discounting, which weights the value of health benefits depending on 

whether they would be realized today or in the future.   

Fundamental Concept: Valuation 

Valuation Functions are used by BenMAP to estimate the economic values of changes in the 
incidence of health effects. In the context of human health benefits assessment, these functions 
help express society's preferences for avoiding certain health effects as an economic value (e.g., in 
U.S. dollars).  

For morbidity effects, BenMAP estimates monetized benefits using either Willingness to Pay 
(WTP) or Cost of Illness (COI)-based valuation functions. WTP is viewed by economists as the most 
complete and appropriate measure of the value of a risk reduction and reflects the willingness of 
individuals to exchange money for a reduction in his or her risk of illness or death. COI estimates the 
value of a health effect based on the observed direct and indirect costs associated with that 
condition. Direct costs would include medical costs such as hospital stays and pharmaceutical 
costs, while indirect costs include impacts such as lost earnings from days unable to work.  A COI-
based estimate is expected to understate the true economic value of reductions in risk of a health 
effect because it often captures only a subset of cost categories, and it does not include the value of 
impact categories such as avoided pain and suffering.  

For mortality effects, BenMAP generally estimates monetized benefits using the Value of Statistical 
Life (VSL), a WTP-based estimate derived from an extensive literature of observed or elicited 
estimates of the monetary value that an individual is willing to exchange for small reductions in his 
or her risk of death. It does NOT represent the value of the life of any one specified individual. 

 

Improvements in ambient air quality generally lower the risk of developing an adverse health 

effect by a fairly small amount at the individual level. When aggregated across a large 

population exposed to air pollution, these small risk changes can result in substantial fewer 

numbers of premature deaths or of anticipated cases of illness, hospitalizations, emergency 

department visits and so forth. For mortality, it is the small risk changes that are being 
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valued, based on individuals’ WTP (i.e., their willingness to exchange money for lower 

mortality risk). For other health effects, we estimate costs on a case-by-case basis, either by 

using individuals’ measured WTP to avoid a particular effect or using the measurable costs 

incurred for a given case of illness as a proxy for the value of avoiding that effect (a COI 

approach).  These values are incorporated into valuation functions in BenMAP used to 

estimate the monetized health benefits of reducing air pollution.  

These benefits (reductions in risk) may vary across the population (and could be zero for 

some individuals). Likewise, the WTP for a given benefit is likely to vary from one individual to 

another. In theory, the total social value associated with the decrease in risk of a given health 

problem resulting from a given reduction in pollution concentrations is generally taken to be 

the sum of everyone's WTP for the benefits they receive. For the COI approach, costs may 

vary from patient to patient, depending on severity of the case and from location to location. 

Wages may also vary from location to location. In BenMAP, we apply an estimate of the mean 

WTP or COI value per case and use county-level data on wages to estimate indirect impacts 

such as lost workdays.  

4.2 Monetizing Health Benefits  

Epidemiological studies allow us to estimate the number of cases of an adverse health effect 

that would be avoided by a given reduction in pollutant concentrations. If we have an 

estimate of the average individual's WTP for the risk reduction conferred upon him, we can 

derive an estimate of the value of a statistical case avoided. Suppose, for example, that a 

given reduction in pollutant concentrations results in a decrease in mortality risk of 1/10,000. 

Then for every 10,000 individuals, one individual would be expected to die in the absence of 

the reduction in pollutant concentrations (who would not be expected to die in the presence 

of the reduction in pollutant concentrations). If the average individual's WTP for this 1/10,000 

decrease in mortality risk is $1,000, then the VSL is 10,000 x $1,000, or $10 million. The same 

type of calculation can produce values for statistical incidences of other health effects.  
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Sometimes those economic values come from stated preference studies in which study 

participants are asked about their WTP to avoid a specific adverse health effect. Many other 

WTP estimates are derived using revealed preference techniques, which rely on observed 

behavior in actual markets to infer individuals’ preferences for relevant “non-market” goods 

such as changes in mortality risks. For example, wage-risk studies are a form of revealed 

preference techniques which rely on labor markets to understand how individuals trade off 

risks of death with a monetary value (wages). When estimates of WTP are not available, 

economic values can be approximated by other measures, most notably COI measures.  

An individual's WTP to avoid an adverse health effect will include the amount of money he or 

she would have to pay for medical expenses associated with the illness. Because medical 

expenditures are to a significant extent shared by society via medical insurance, Medicare, 

etc., the medical expenditures actually incurred by the individual are likely to be less than the 

total medical cost to society.  

The COI approach attempts to estimate the total value of the medical resources used, the 

value of the individual's time lost resulting from the illness, and other costs such as caregiver 

time. Because this method does not include the value of avoiding the pain and suffering 

resulting from the illness (a potentially large component), it is generally believed to 

underestimate the total economic value of avoiding the illness, perhaps substantially.  

The contingent valuation method attempts to elicit from people what they would be willing 

to pay to avoid the illness. Because of the distortion in the market for medical goods and 

services, whereby individuals generally do not pay the full value of medical care, this method 

too is likely to understate the total economic value of avoiding the illness.  

Although the COI and WTP are the two most common methods, other methods have been 

used in certain circumstances. The method with which the benefit analyst chooses to value a 

particular health effect will depend in part on what data are available. The unit values 
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currently available for use in BenMAP are data or estimates that have been collected or 

generated by researchers and can be readily obtained in publicly available databases or in 

the open literature. When reviewing the economic literature to determine the appropriate 

valuation functions to use, it is important to have an economist assist. 

4.3 Valuing Reductions in Premature Mortality 

The economics literature discussing the value of changes in fatality risks is extensive and 

provides a basis for monetizing benefits when the number of deaths avoided as a result of an 

air quality improvement can be calculated, but the literature on certain issues regarding the 

appropriate method for valuing reductions in premature mortality risk is still developing. 

Issues such as the appropriate discount rate and whether there are factors, such as age or the 

quality of life, that should be taken into consideration when estimating the value of avoided 

premature mortality are still under discussion. BenMAP currently offers a variety of options 

reflecting the uncertainty surrounding the unit value for premature mortality. See Appendices 

H and I for more detail on the valuation functions available in BenMAP.  

Monetary estimates of changes in premature mortality risk are often expressed in terms of 

the VSL. This term is easily misinterpreted and should be carefully described when used in 

benefit analysis. VSL is the aggregate dollar amount that a large group of people would be 

willing to pay for a reduction in their individual risks of dying in a year, such that we would 

expect one fewer death among the group during that year on average. The basic assumption 

underlying the VSL approach is that equal increments in fatality risks are valued equally. For 

similar reasons, the VSL approach is only appropriate for small changes in the risk of death 

and should not be used to value more extensive changes. Because changes in individual 

fatality risks resulting from environmental regulation are typically very small, the VSL 

approach is usually acceptable for these types of benefit analyses.  



Chapter 4 – Valuation and Discounting 

 
BenMAP User Manual v0.5  April 2024 

4-5 

The U.S. EPA National Center for Environmental Economics provides answers to frequently 

asked questions regarding the economic value of mortality risk on its website: 

https://www.epa.gov/environmental-economics/mortality-risk-valuation. You may wish to 

consult this site as you have questions regarding how U.S. EPA derives VSL and applies it in an 

environmental benefits analysis. 

4.4 Overview of Discounting  

What is discounting?  

In general, people prefer current consumption to future consumption. In other words, one 

dollar today is worth more than one dollar tomorrow, and that dollar continues to decrease 

in value as you go further out into the future. (This concept is also referred to as the social 

rate of time preference or the time value of 

money. This is a different concept than 

inflation, which is a general increase in the 

price level of goods and services.) Discounting 

is the process of converting a future dollar into 

a value that can be compared to the value of a 

dollar today. The discount rate expresses this 

process in quantitative terms. The higher the 

discount rate, the faster value decreases over 

time. For example, $1 twenty years from now 

is worth $0.55 today at a 3% annual discount 

rate, but worth only $0.26 at a 7% annual 

discount rate.  

Fundamental Concept: Discounting / 
Discount Rate 

In a cost-benefit analysis, discounting 
accounts for the fact that people value 
benefits that occur in the future less than 
benefits received today. The rate at which 
individuals discount the value of those 
benefits is the discount rate. Typically, if a 
benefit is expected to be realized as a stream 
of benefits over multiple years, as is often 
assumed for mortality risk reductions, the 
economic value of that benefit stream would 
be discounted back to the starting year of 
analysis and summed as a Net Present Value 
(NPV) of benefits. 

https://www.epa.gov/environmental-economics/mortality-risk-valuation
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A basic discounting function is as follows (Equation 4-1):  

Equation 4-1 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

(1 + 𝑟𝑟)𝑡𝑡
 

where r is the discount rate and t is the time period (usually in years).  

Example: $1 twenty years from now at a 3% annual discount rate is worth $0.55 today  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  
$1.00

(1 + 0.03)20
=

1
(1.03)20

=
1

1.806111
= 0.553676 = $0.55 

Why do we discount benefits?  

The benefits of reductions in air pollution may need to be discounted for three key reasons:  

1. Today's society values benefits that occur today more highly than benefits that will 

occur in the future. Therefore, we must discount to compare those future benefits 

with current benefits.  

2. For a cost-benefit analysis, benefit estimates in a future year need to be 

comparable to the cost estimates for that same year (which are also discounted).  

3. Discounting can be used to compare the future streams of benefits and costs. The 

BenMAP program estimates changes in adverse health effects based on changes 

in air quality for one specified analysis year, even though certain health benefits 

may occur after the analysis year. Discounting can be used to compare the value of 

future benefits with the value of benefits occurring during the analysis year. 

Under which scenarios would I need to discount benefits?  

Discounting of monetary values may be necessary in multiple scenarios, such as the 

following:  



Chapter 4 – Valuation and Discounting 

 
BenMAP User Manual v0.5  April 2024 

4-7 

1. The costs and benefits of the rule or policy you are evaluating do not occur in the same 

year, and there may be a different temporal pattern for the anticipated streams of 

costs and benefits. For example, costs of implementing a rule may be incurred before 

emissions begin to be reduced. By discounting the stream of costs and the stream of 

benefits back to a common reference year and summing each of them into a single 

integrated value (Net Present Value), we can better compare the two values.  

2. Certain health effects result in long-term, multi-year medical expenses, lost earnings, 

and/or other impacts. The future medical costs and impacts avoided will need to be 

discounted to a single integrated value (Net Present Value) to represent the overall 

value of that avoided health effect in the year it would have occurred. For example, an 

acute myocardial infarction in one year could result in medical costs and lost earnings 

for several years. 

3. Following a pollution reduction, the resulting benefits may require a number of years 

to be fully realized as the overall population health improves; this effect is often 

referred to as a cessation lag. The monetized benefits of these future health risk 

changes need to be discounted to a single NPV in the year of the pollution change. For 

example, exposure to particulate matter in 2025 could result in a diagnosed case of 

lung cancer several years later. 

When would we not discount benefits?  

In other instances, it is not necessary to discount the benefits estimates generated by 

BenMAP. This may be true if: 

1. The health benefit occurs within the same year as the exposure change; and 

2. The health effect and its associated costs are expected to occur in the same 

year 

3. The exposure change occurs in the same year as the analysis. 
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The first condition may be satisfied by individual incidence changes that occur in close 

proximity to the exposure change, such as changes in emergency department visits or inhaler 

use, where fluctuations in daily concentrations may result in fewer health effects. The 

second condition requires that the health effect results in no costs that extend beyond the 

year of impact. Impacts such as emergency department visits and school loss days would fall 

in this category, but not effects such as myocardial infarctions (heart attacks), where multiple 

years of ongoing treatment and therapy are likely required.  It is important to understand the 

assumptions within the health and valuation functions before you decide whether you need 

to discount. For example, if your analysis year for your benefits estimates does not match the 

analysis year for your costs estimates, you may need to discount in order to compare your 

benefits with your costs even if you meet the criteria listed above. The third condition 

requires that health impacts be realized in the same year as the analysis.  Health impacts 

costs and benefits due to an exposure in a future year should typically be discounted to a 

specified year of analysis, even if they occur concurrently with the exposure change. 

Which discount rate should I choose?  

Selecting a discount rate is challenging and is one of the most contentious methodological 

issues encountered in economic analyses of environmental policies. Because environmental 

regulations frequently have differing streams of costs and benefits over time, the selected 

discount rate may determine whether the benefits of a regulatory action exceed the costs. In 

addition, selecting a higher discount rate may result in a smaller benefits estimate because 

the future benefits are worth much less than they would be if a lower discount rate was 

selected. For benefits that occur well into the future, the issue of intergenerational equity 

further complicates the selection of the discount rate. (In the context of environmental policy, 

intergenerational equity refers to the fairness of the distribution of the costs and benefits of a 

long-lived policy when those costs and benefits are borne by different generations. Most 

criteria pollutants are not considered to have intergenerational equity issues, but the issue 
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frequently arises in analyses of climate-related air pollution impacts and analyses of mercury 

exposures.)  

There are various economic arguments for and against various discount rates. To comply 

with OMB and U.S. EPA's recommendations, U.S. EPA currently uses discount rates of 3% and 

7% for benefit analyses.  

Which health effects accrue medical expenses or lost earnings for multiple years, and 

how do I discount them?  

BenMAP includes health and valuation functions for several chronic health effects, 

including PM2.5-related asthma, and non-fatal acute myocardial infarctions (AMIs, or heart 

attacks).  

• Asthma is assumed to last from the initial onset of the illness throughout the rest of 

the individual's life. BenMAP currently includes two COI functions representing the 

two discount rates for asthma.  

• Technically, AMIs are discrete, acute events, not chronic conditions. However, heart 

attacks cause chronic follow-up health effects that accrue medical expenses over 

time, similar to chronic conditions. You can discount the economic value of these 

chronic effects through the valuation function in BenMAP. AMIs are assumed to accrue 

costs over five years. Although WTP functions for AMIs are not available, BenMAP 

currently includes several COI functions that incorporate the direct medical costs and 

the opportunity cost (lost earnings) for specific age groups at two discount rates.  

• Other health effects with multi-year valuations include Alzheimer’s Disease, 

Parkinson’s Disease, Out of Hospital Cardiac Arrest, and Non-fatal Lung Cancer. 

See Appendix H for details on the categories and temporal patterns of costs and the 

discounting assumptions, if any, applied within the valuation functions. 
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Should I discount the health incidence as well as the valuation?  

You should not discount the health incidence (i.e., the counts of cases avoided) for any of the 

scenarios mentioned above. The cessation lag does not change the total number of 

premature deaths attributable to a pollution change, but rather the timing of those deaths. If 

you discounted the health incidence along with valuation, you would be discounting twice.   

Which health benefits may not occur in the same year as exposure?  

In many cases, the health benefit from a decrease in exposure to air pollution occurs shortly 

after exposure, in a matter of hours or days for example, but there can be more significant 

lags between exposure change and the realization of the full health benefit. If exposure and 

the health effect do not occur within the same year, it is necessary to discount those benefits 

back to the analysis year. The only PM2.5 health functions currently in BenMAP that fall into 

this category are PM2.5-related premature mortality and incidence of non-fatal lung cancer. 

Discounting the value of these impacts is subject to considerable uncertainty because in 

both cases, the structure of how the population risk changes with time is unknown. However, 

scientific literature on similar adverse health effects and new intervention studies suggest 

that premature mortality, including effects related to lung cancer disease progression, 

probably would not occur in the same year as the exposure. (See: Roosli M, Kunzli N, Braun-

Fahrlander C, Egger M. 2005. "Years of life lost attributable to air pollution in Switzerland: 

dynamic exposure- response model." International Journal of Epidemiology 34[5]:1029-35.) 

VSL valuation functions in BenMAP incorporate cessation lags using 2%, 3%, and 7% 

discount rates. 

U.S. EPA's Science Advisory Board recommends future research to support the development 

of defensible lag structures and provides a lag structure that could be assumed until 

additional research has been completed. Some example lag structures from the 2012 PM RIA 
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are shown in Figures 4-1 and 4-2 below.9 Currently, BenMAP incorporates a 20-year cessation 

lag by default for VSL valuation of mortality and a separate cessation lag model for valuing 

non-fatal lung cancer that is based on historical rates of incidence by age (see Appendix H for 

details). At present, the web tool does not support estimating other lag structures, though 

this functionality is expected in future versions of the tool. 

Note: Discounting is not necessary for short-term ozone-related premature mortality 

because it occurs within the analysis year. However, discounting is necessary for premature 

mortality associated with long-term ozone exposure. 

 
 

 
9 Source: U.S. EPA. 2012. Regulatory Impact Analysis for the Final Revisions to that National Ambient Air Quality 
Standards for Particulate Matter. Office of Air Quality Planning and Standards. Research Triangle Park, NC. 
https://www3.epa.gov/ttnecas1/regdata/RIAs/finalria.pdf 

https://www3.epa.gov/ttnecas1/regdata/RIAs/finalria.pdf
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Figure 4-1 Graphical representation of assumed lag structures analyzed in U.S. EPA's 
PM RIA as sensitivity analyses 

 

Figure 4-2 Graphical representation of cumulative assumed lag structures analyzed 
in U.S. EPA's PM RIA as sensitivity analyses 
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4.5 Valuing Incidence Results 

When BenMAP runs, it will generate a valuation 

result for each Valuation Method you select by 

running the method’s function on the selected 

incidence results. You do not need to select a 

Valuation Method for every incidence result—

incidence results without any Valuation Method 

will simply be ignored when valuation results are 

generated.  

By default, BenMAP will use the uncertainty 

estimates built into the valuation functions, 

along with the uncertainty estimated for health 

incidence changes, to generate lower- and upper-bound estimates of the value of health 

impacts (specifically, the 2.5th and 97.5th percentiles of the distribution, representing a 95% 

confidence interval around the central result).  The web tool does not currently support 

exporting other percentiles of the distribution, but this functionality will be included in a 

future release. To obtain the value of the health incidence, BenMAP draws samples from both 

the valuation and health incidence  

distributions and multiplies each combination of values together, then sorts these results to 

estimate the combined uncertainty contributed by both incidence and valuation. More 

information on this procedure is found in Appendix K.  

4.5.1 How to Specify Valuation Functions in BenMAP 

After you have specified your health effects, you can choose valuation functions to 

generate a monetized estimate of health benefits for each health effect. After selecting your 

Guidance/Best Practices 

When selecting Valuation Methods for your 
analysis, it is important to match the 
valuation function to the health incidence 
estimate as closely as possible. For 
example, if the health effect is Asthma 
Symptoms, Albuterol use, then the valuation 
function should correspond specifically to 
albuterol use rather than other asthma 
symptoms such as cough or wheeze.  

For long-term health impacts, the valuation 
function may also account for your 
preferred time span of analysis and 
discount rate. 
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health effect sets, you will be presented with a screen similar to the one below that lists all 

the individual health effects that you have chosen to analyze.  

 

To value a health effect, click the pencil icon at the far right of its row. A pop-up window 

will appear that includes a drop-down menu you can use to select a valuation function. Scroll 

to the valuation function or functions that match the health effect and age range of the 

health impact function you are valuing. Click on a valuation function to select it. You may 

click multiple rows to select multiple valuation functions, each of which will be run to 

generate a separate valuation estimate. 

Once you have selected all the valuation functions you wish to run for a given health effect, 

click Save to exit the pop-up window and return to the main screen with the full list of health 

effects. Repeat this process for each health effect you wish to value. 

For more guidance on how to value health effects, see Section 1.3.6 of this user manual. 

4.5.2 Details on Valuation Functions 

The complete list of health effects with valuation functions currently available in BenMAP is 

presented in Table 4-1.  
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Table 4-1 Details on Valuation Functions 

Health Effect Age Range 

Acute Myocardial Infarction, Nonfatal 0-24; 25-44; 45-54; 55-65; 66-99 

Asthma Symptoms, Albuterol Use 0-99 

Asthma Symptoms, Chest Tightness 0-17; 18-99 

Asthma Symptoms, Cough 0-17; 18-99 

Asthma Symptoms, Shortness of Breath 0-17; 18-99 

Asthma Symptoms, Wheeze 0-17; 18-99 

Emergency Hospital Admissions, All Respiratory 65-99 

ER Visits, Asthma 0-99 

ER Visits, All Cardiac Outcomes 0-99 

ER Visits, All Respiratory 0-99 

Hospital Admissions, All Cardiac Outcomes 0-99 

Hospital Admissions, Cardio-, Cerebro- and Peripheral 
Vascular Disease 

65-99 

Hospital Admissions, All Respiratory 0-18; 65-99 

Hospital Admissions, Respiratory-1* 0-99 

Hospital Admissions, Respiratory-2* 65-99 

Hospital Admissions, Alzheimer’s Disease 65-99 

Hospital Admissions, Parkinson’s Disease 18-99; 65-99 

Incidence, Out of Hospital Cardiac Arrest 35-99 

Incidence, Stroke 18-99 

Incidence, Asthma 18-99 

Incidence, Hay Fever/Rhinitis 0-17 

Incidence, Lung Cancer 30-34; 35-44; 45-54; 55-64; 65-74; 75-84; 85-99 

Minor Restricted Activity Days 18-99 

Mortality, All Cause 0-99 

School Loss days 0-17 

Work Loss Days 18-65 
* Respiratory hospital admissions valuation functions evaluate different subsets of respiratory effects and are named 
accordingly to correspond with associated health impact functions and baseline incidence values. For more information, see 
section H.2.1 of Appendix H. 



Chapter 4 – Valuation and Discounting 

 
BenMAP User Manual v0.5  April 2024 

4-16 

4.5.3 Default EPA Regulatory Use Valuation Functions 

The current list of default valuation functions assigned to each health effect when users 

choose to “Use EPA’s current default values” in BenMAP is presented in Table 4-2. See 

Appendix H for additional details valuation function core unit values. 

Table 4-2 Default EPA Regulatory Valuation Functions 

Health Effect Age Range Basis for Estimate 
Core Unit Value* 
(2015$) 

Acute Myocardial Infarction, 
Nonfatal 

0-24; 25-44; 45-54; 
55-65; 66-99 

COI: 3 yrs med, 5 yrs wages, 2% DR, 
O’Sullivan (2011) 

Medical: $49,108 
Wage loss: varies 
by age** 

Asthma Symptoms, Albuterol 
Use 0-99 

COI: use of inhaler $0.35 

Asthma Symptoms: Chest 
Tightness; Cough; Shortness of 
Breath; Wheeze 

0-17 WTP: 1 symptom-day, Dickie and 
Messmen (2004) 

$219 

18-99 WTP: 1 symptom-day, Dickie and 
Messmen (2004) 

$115 

Emergency Hospital 
Admissions, All Respiratory 65-99 

COI: HCUP med costs; lost wages $11,990^^ 

ER Visits, Asthma 0-99 Pooled COI estimates: Smith et al. 
(1997) & Stanford et al. (1999) 

$534;  
$447 

ER Visits, All Cardiac Outcomes 0-99 COI: HCUP med costs $1,161 

ER Visits, All Respiratory 0-99 COI: HCUP med costs $875 

HA, All Cardiac Outcomes 0-99 COI: HCUP med costs; lost wages $16,918^^ 

HA, Cardio-, Cerebro- and 
Peripheral Vascular Disease 65-99 

COI: HCUP med costs; lost wages 
$15,498^^ 

HA, All Respiratory 
0-18 COI: HCUP med costs; lost wages $9,678^^ 

65-99 COI: HCUP med costs; lost wages $36,451^^ 

HA, Respiratory-1^ 0-99 COI: HCUP med costs; lost wages $8,343^^ 

HA, Respiratory-2^ 65-99 COI: HCUP med costs; lost wages $9,808^^ 

HA, Alzheimer’s Disease 65-99 COI: HCUP med costs; lost wages $12,070^^ 

HA, Parkinson’s Disease 18-99; 65-99 COI: HCUP med costs; lost wages $12,852^^ 

Incidence, Out of Hospital 
Cardiac Arrest 35-99 

COI: 3 yrs med costs, 2% DR, 
O’Sullivan (2011) 

$35,880 

Incidence, Stroke 18-99 
COI: lifetime med and productivity, 
2% DR Maniloff and Fann, 2023 

$159,067 
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4.6 Currency Year and Income Growth  

The web tool maintains the Variable Datasets from the desktop tool, which includes 

economic variables such as income and poverty data, inflation indices, and income growth 

factor tables. The relevant year for inflation and income growth matches the year chosen for 

population when you prepare your BenMAP run configuration. You can confirm the years 

used for these adjustments in the Task Log. 

Inflation Adjustment  

The Inflation Adjustment needs to be carefully considered in relation to the valuation 

dataset that you are using. The web tool uses the same inflation factor table as the desktop 

version of BenMAP. These indices were derived using data from the Bureau of Labor Statistics 

Health Effect Age Range Basis for Estimate 
Core Unit Value* 
(2015$) 

Incidence, Asthma 18-99 
COI: lifetime med, lifetime 
productivity, 2% DR Maniloff and 
Fann, 2023 

$182,681 

Incidence, Hay Fever/Rhinitis 0-17 COI: 1 yr med costs, Soni, A. (2008) $600 

Incidence, Lung Cancer 
30-34; 35-44; 45-
54; 55-64; 65-74; 
75-84; 85-99 

COI: 5 yrs med costs, 2% DR, Kaye 
(2018) 

$34,155** 

Minor Restricted Activity Days 18-99 WTP: 1 day, CV studies $70^^ 

Mortality, All Cause 0-99 
VSL, based on 26 value-of-life 
studies, 2% discount rate 

$8,132,666 

School Loss days 0-17 County average of caregiver costs 
and loss of learning, 2% DR 

$1,116^^ 

Work Loss Days 18-65 County average of mean daily wage $298^^ 

*Core unit values represent the total COI, including lost opportunity costs where relevant. 
** The default valuation function is a series of functions stratified by age. 
^ Respiratory hospital admissions valuation functions evaluate different subsets of respiratory effects and are named 
accordingly to correspond with associated health impact functions and baseline incidence values. For more information, see 
section H.2.1 of Appendix H. 
^^ The applied unit values in BenMAP for these measures are county-specific, based on county-specific mean wages, fringe 
benefits, and/or employment rates. The unit values shown in this table reflect the county average of the county-specific 
variables applied to these health outcomes. 
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(all goods index, medical cost index, wage index). The default valuation database in the 

United States setup has a currency year of 2015, so the inflation dataset has a value of 1 for 

the year 2015.  The web tool sets the inflation year is equal to the Population Year you 

selected in Step 4, or to the latest year for which inflation data are available if less than the 

population year. 

Income Growth Adjustment  

Economic studies generally provide evidence that WTP estimates are influenced by the 

income of individuals. As income rises over time, people are likely to allocate more money 

towards safety (i.e., risk reduction), and thus WTP estimates are likely to increase as well. The 

Income Growth Adjustment is designed to take this phenomenon into account, allowing you 

to account for income growth between the time when WTP estimates were calculated and the 

year of your analysis.  

As with the Inflation Adjustment, the Income Growth Adjustment has a close connection to 

the valuation estimates. For example, the valuation estimates in the United States setup are 

assumed to be based on income levels from 1990, so the income growth adjustment database 

has a value of 1 for the year 1990.  

The web tool automatically incorporates an Income Growth Adjustment, where the income 

year is set equal to the Population Year you selected in Step 4, or to the latest year for which 

income growth adjustment data are available if less than the population year. Historical 

income growth (1990-2016) is from the U.S. Bureau of Economic Analysis (BEA). Future 

changes in annual income are based on data presented in the 2020 Annual Energy Outlook.  
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Chapter 5  
Customizing a Benefits 
Analysis 
 

 

In this chapter… 
• Learn more about the file structure for data inputs. 
• Learn how to import custom datasets. 
• Learn how to conduct batch runs in BenMAP 
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5.1 Introduction to Customizing a Benefits Analysis 

BenMAP contains numerous datasets that can be used to conduct a complete health benefits 

assessment. However, you can also import custom datasets to the tool. Custom datasets 

allow you to tailor a given analysis to use parameters specific to certain scenarios and/or 

geographic areas.  

Currently, the web tool only supports import of custom air quality surfaces. Future versions 

of the tool will support customization via additional custom inputs, such as 

incidence/prevalence datasets, population datasets, health impact functions, and 

valuation functions. 

To view existing datasets and upload custom files, go to the Data Center and select Manage 

Data. 
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5.2 Custom Air Quality Surfaces 

BenMAP does not include an air quality modeling component; thus, it relies on user-

provided estimates of air quality based on air quality models. Future versions of the tool will 

support surfaces derived from measured air quality data as well, such as concentrations 

based on networks of air quality monitors. Any custom air quality file must be assigned to a 

grid structure, where each cell contains data for one or more air quality metrics (e.g., 24-

hour average, 8-hour maximum) in that location. 

The grids are either regularly shaped areas like those used by air quality models, or irregular 

shapes, like provinces, local government areas, cities, or nations. Each grid cell is identified 

by a Row and Column identifier, as described below. BenMAP accepts air quality files at the 

12km grid level, as well as at the U.S. National, 

State, and County level. Future versions will 

enable you to first upload a GIS shapefile in order 

to define a custom grid to which you may then 

assign air quality concentrations. 

5.2.1 Model Data File Structure  

To create air quality surfaces, BenMAP uses a 

number of inputs, including modeling data. You 

may enter your own modeling data, provided that 

the data are in a format recognized by BenMAP. 

BenMAP will accept air quality data saved in the 

comma separated values (CSV) format. Each CSV value must represent a single time period 

(e.g., one-year or a multi-year average); data for additional time periods must be uploaded in 

a separate file.  

Fundamental Concept: Air Quality 
Surface 

An air quality surface contains modeled 
or monitored air pollution data arranged 
spatially in a series of cells; these cells 
may be a regular shape (like a 12km by 
12km grid) or an irregular shape (like a 
county or census tract). BenMAP uses one 
air quality surface to represent the pre-
policy scenario and a second surface to 
represent the post-policy scenario. These 
pre- and post-policy surfaces must use the 
same air quality grid. The program 
calculates the difference between pre- and 
post-policy scenarios as an input to the 
health impact functions.  
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Table 5-1 presents the required elements for these files; variable names must be matched 

exactly. For some elements, BenMAP will accept several names (such as “Column” or “Col”).  

Table 5-2 presents a sample data file. Each CSV file may contain data for multiple air quality 

metrics; for example, an ozone file may contain measurements at each grid cell for both 8-

hour maximum and 1-hour maximum ozone metrics, subject to the constraints in Table 5-1. 

Table 5-1 Air Modeling Data File Variables 

Variable Name Type Required Notes 

Column/Col Integer Yes The column and the row uniquely identify each set of 
modeling values and link the modeling data with cells in a 
grid definition. Row Integer Yes 

Metric Text No This variable is either blank (signifying that the Values are 
Observations, rather than Metric values), or must reference 
an already defined Metric (e.g., 24-hour daily mean) for the 
appropriate Pollutant. 

Seasonal Metric Text No This variable is either blank (signifying that the Values are 
not Seasonal Metric values) or must reference an already 
defined Seasonal Metric for the Metric (e.g., mean of the 1-
hour maximum values for the months of June through 
August). Files may contain data for more than one metric, 
but the values for each metric/grid cell combination must 
appear in its own row. 

Annual 
Metric/Statistic 

Text Yes For use with annual values, this variable must be one 
of:  None, Mean, Median, Max, Min, Sum (e.g., mean of the 1-
hour maximum values for the year) 

Value/Values10 Number Yes The tool currently accepts annual values, i.e., a single value 
for the year for each grid cell. See Table 5-2 for a sample air 
quality file. 

 

 
 

 
10 Future functionality of the tool will support daily values, which must be supplied as a comma-delimited string of 
values for the year [e.g., 365 or 366 (leap year) values for daily data]. To input daily values, Annual Metric must be 
blank. Missing values must be signified with a period (‘.’).  
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Table 5-2 Sample Air Modeling Data File 

 

5.2.2 Loading Custom Air Quality Surfaces 

There are multiple ways to add a custom air quality layer to BenMAP: through the Data 

Center or during Step 3: What Air Quality. 

To review air quality layers saved in the tool’s database and add or delete any custom 

datasets, go to the Data Center. Click Manage Data, then Review Air Quality. 
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Select a pollutant from the drop-down menu. 

 

All air quality surfaces that fit the pollutant you selected will be displayed, as well as the 

option to Add Air Quality Data. 

 

You can also add a custom air quality layer in Step 3: What Air Quality. When you reach this 

step, you will see a button at the top of the screen to Add Air Quality Data.   

 

A window will pop up, where you will be asked to provide a name for your custom air quality 

layer, select the grid definition it uses, and upload the file from your computer. 
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For more information on uploading custom air quality surfaces, refer to Section 1.3.3 of this 

user manual. 

5.2.3 Validating Custom Air Quality Surfaces 

After uploading your custom air quality layer, BenMAP will validate the surface to ensure it is 

formatted correctly. If your air quality layer passes validation and is successfully uploaded, 

the following pop-up message will appear. Click OK to dismiss. 
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Your custom air quality surface will appear in the Review Air Quality window of the data 

center. You can select the layer and review the statistics displayed below to check the data 

that you just imported. 

 

If there is an error with your custom air quality surface, it will not pass the validation step and 

an error message will appear. A pop-up with possible errors is shown below.  
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Other potential errors not shown here include using an unavailable pollutant or using an air 

quality surface name that’s already taken. Click OK and address the listed error(s) in the input 

file you created before reuploading.  

5.3 Custom Health Incidence Data 

BenMAP allows for the upload of custom incidence datasets through the Data Center. Similar 

to the air quality surface uploads, any custom health incidence data must be assigned to a 

grid structure, where each cell contains data for incidence and/or prevalence rates for one or 

more health effects (e.g., Mortality, All Cause, Hospital Admissions, All Respiratory, etc.) in 

that location. These data represent baseline rates of mortality and morbidity for the 

populations in each location, a key input to the health impact calculations. 

5.3.1 Incidence Data File Structure 

BenMAP will accept health incidence data in the comma separated values (.CSV) format. Each 

.CSV file you upload can contain data for a single year, multiple years, or data representing a 
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multi-year average. It can also include baseline incidence or prevalence rates for multiple 

health effects and rates stratified based on race, gender, or ethnicity if desired.  

Table 5-3 presents the required elements for these files; variable names must match exactly. 

Table 5-4 presents a sample data file. The Prevalence variable is used to determine whether 

the value represents incidence or prevalence data. 
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Table 5-3 Incidence Data File Variables 

Variable Type Required Notes 

Column Integer Yes The column and the row uniquely identify each set of 
modeling values and link the incidence data with cells in 
a grid definition. Row Integer Yes 

Health Effect 
Group 

Text Yes Must reference an already defined Health Effect and/or 
Health Effect Group. 

Health Effect Text Yes 

Race Text No Should either be blank (signifying All Races) or reference 
a defined Race, such as "Black" (from Population 
Configuration) 

Gender Text No Should either be blank (signifying All Genders) or 
reference a defined Gender: “Male” or “Female” 

Ethnicity Text No Should either be blank (signifying All Ethnicities) or 
reference a defined Ethnicity, such as "Hispanic" (from 
Population Configuration). 

Year Integer Yes Year for which incidence/prevalence values represent. 
Must be a single year value. 

Start Age Integer Yes Specifies the low and high ages, inclusive. For example, 
Start Age of "0" and End Age of "1" include infants 
through the first 12 months of life and all one-year old 
infants. 

End Age Integer Yes 

Type Text Yes Should either be “Incidence” or “Prevalence” 

Timeframe Text No Timeframe for which incidence/prevalence values 
represent (e.g., annual, daily, etc.). 

Units Text No The unit of the incidence/prevalence rate (e.g., cases per 
person-year, cases per person-day, etc.) 

Value Number Yes The incidence/prevalence rate for the specified 
demographic group for this location. 

Distribution Text No The distribution associated with the 
incidence/prevalence rate standard error (required if 
standard error is provided). 

Standard Error Number No The standard error of the incidence/prevalence rate. 
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Table 5-4 Sample Incidence Data File 

 

5.3.2 Loading Custom Incidence Files 

To review incidence datasets saved in the tool’s database and add or delete any custom 

datasets, go to the Data Center. Click Manage Data, then Review Incidence. 

 

All incidence datasets will be displayed as well as an option to add a custom incidence 

dataset.

 

A window will pop up, in this window, you will need to provide a name for your custom 

incidence dataset and the grid definition it uses (the geographic scale of the data, e.g., CMAQ 
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12km Nation, County, State, or Nation). After entering this information, click the  icon at 

the top right to upload the baseline health incidence from your computer. 

 

5.3.3 Validating Incidence Datasets 

After you’ve uploaded your custom baseline health incidence, BenMAP will validate the data 

to ensure it is formatted correctly. If your baseline incidence passes the validation step and is 

successfully uploaded, the following pop-up message will appear. Click OK to dismiss.  
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Your custom incidence dataset will now appear in the table. You can select the dataset and 

review the statistics displayed below to check the data that you just imported. 

 

If there is an error with your custom incidence dataset, it will not pass the validation step and 

an error message will appear. Potential errors include not having the required columns or 

missing values in certain cells of the CSV. Click OK and address the listed error(s) in the input 

file you created before reuploading.  
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5.4 Customizing Valuation Function Selection 

While BenMAP does not allow for custom valuation function uploads, it does allow you to 

assign monetary values to each health effect change assessed. This selection occurs on the 

Value of effects? page of an Analyze Health Impacts of Air Pollutants analysis. After you 

have selected a set of health effects, you are directed to a screen where you can match each 

health effect with a valuation function derived from peer-reviewed economic literature 

and/or extensive health-care databases of medical costs.  

The valuation step is recommended, but optional. If you would like to value your selected 

health effects, first choose from the valuation selection drop down in the upper left corner 

of the window. There are two drop-down options: 1) “Select my own value functions”, and 2) 

“Use EPA’s current default values”. 

 

If you choose “Select my own value functions”, you will need to specify a valuation functions 

for each health effect by clicking on the pencil icon  at the left of each row. A pop-up 

window will appear with the same metadata for the health impact function of interest, as 

well as a drop-down menu you can use to select a valuation function. Open the drop-down 

menu and scroll to the valuation function or functions that match the health effect and age 

range of the health impact function. Click on a valuation function to select it. You may click 

multiple rows to select multiple valuation functions. To delete any valuation function you do 

not wish to include, click the  next to the function in the pop-up window. 
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Select all the valuation functions you wish to run and click Save to exit the pop-up window 

and return to the main screen with the full list of health effects/functions. Repeat this process 

for all health effects that you wish to value. If you choose to skip valuation, leave the 

Valuation column blank.  

If you choose “Use EPA’s current default values” from the valuation selection drop down, a 

valuation function will populate for all health effects aligning with the current valuation 

methods utilized by EPA in their regulatory impact assessments. If you wish to change any of 

the default valuation functions populated, click on the pencil icon  at the left of the row of 

interest, click the  next to the function in the pop-up window if you wish to delete the 

selection, and choose the desired valuation function from the drop-down menu. 

Scroll to the bottom of the screen and choose an Aggregation Scale for the valuation of the 

health effects chosen. Valuation data at the scale chosen will be available for export once the 

valuation task is complete. The default valuation scale is County level. Click Continue to 

review and submit your analysis, or Back to edit previous selections.  
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5.5 Conducting Batch Runs 

Users may specify and submit multiple BenMAP runs simultaneously (a batch run). Batch 

runs may be configured directly through the web interface for either the health impact 

analysis or the exposure analysis process. Each batch run is based on a single pre-policy 

scenario but can compare that scenario against multiple alternative post-policy scenarios 

for multiple population years. This functionality is already implemented in the basic BenMAP 

user interface as described below, and all the model runs associated with a specific batch are 

grouped together in the Task Manager for convenience and ease of management.  

To configure a batch run, simply choose multiple post-policy scenarios to compare against 

your pre-policy scenario in the What air quality? step, and/or select multiple population 

years in the Who will be exposed? step. Each combination of population year and post-

policy scenario is analyzed separately, but BenMAP will group them together for purposes of 

viewing or exporting results and for saving a configuration template.  

Performing a batch run involves the same steps described in Chapter 1, except that you will 

specify additional configurations in the What air quality? step and/or the Who will be 

exposed? step.   
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5.5.1 Choosing Multiple Post-Policy Scenarios 

In the What air quality? step of either analysis, the tool allows for multiple post-policy air 

quality scenarios to be selected.  

 

To view the metadata for any of the selected post-policy air quality scenarios, select from the 

Post Policy Scenario dropdown.  
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5.5.2 Choosing Multiple Population Years 

In the Who will be exposed? step of either analysis, the tool allows for one or more 

population years to be selected for each post-policy air quality scenario.  If you selected 

multiple post-policy air quality scenarios, you have the option to specify one or more 

population years for each one. If you select multiple population years for each scenario, that 

will increase the number of tasks in your batch run accordingly. If you would like the 

population years to be the same for each post-policy scenario, select the years for the first 

scenario and then check the Apply to all scenarios box. 

 

5.5.3 Reviewing Configuration 

The Review & Submit step of either the health or exposure analysis will display the 

configurations chosen in your batch run, including all post-policy scenarios and population 

years. The total number of tasks will depend on the number of post-policy scenarios chosen, 

the number of population years specified for each post-policy scenario, and for a health 

analysis, whether you have chosen to conduct the valuation step. You can choose to save 

your configuration as a template before proceeding with your run; the template will include 

information about all the BenMAP analyses that constitute your batch run. 
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Example Health Impact Analysis review panel 

 

Example Exposure Analysis review panel 

5.5.4 Viewing and Exporting Results 

If during your configurations you selected either multiple post-policy air quality scenarios, or 

multiple years for analysis, BenMAP will group all of these tasks in the Data Center as a single 

batch run, which will be indicated by a symbol. By clicking on the , you can expand the 

batch run to see each individual task and its respective status. Click the symbol to collapse 

and hide the individual tasks within the batch run. Each individual task will be named using 

your specified batch task name plus the post-policy scenario and the population year.  
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To view the results for each task in a batch run, select the View/Export Results option for the 

completed task.  

 

In the following window, use the Post Policy Scenario Name dropdown and the Post Policy 

Scenario Year dropdown to toggle between various task results.  
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If you completed a batch run, you have the choice of exporting only the data for the scenario 

shown on screen (Currently viewed results) or for the entire set of scenarios in the batch run. 

Exporting all results will generate separate .csv files for each post-policy scenario/population 

year combination that will then be compressed into a single .zip file and downloaded to your 

computer. Note that exporting all results may be time consuming, particularly for batches 

with many runs and a large number of health impacts. 
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Chapter 6 Terminology 
 

 

In this chapter, find… 
• Definitions for common terms used in the BenMAP tool 

and in this manual. 
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Aggregation. The summing of grid cell level resulting in a larger spatial scale, such as county, 

state, or national levels.  

Air Quality Metric. A value that expresses both the time period over which air quality values 

are modeled or observed and whether that modeled or observed air quality value is an 

average, maximum, or minimum. For example, the metric DailyMean represents the average 

concentration for the sampling day. This could be taken directly from a single 24-hour 

observation or from an average of hourly (or more frequent) observations. In addition to the 

time period, some metrics also specify the method used for averaging or aggregation. For 

example, a typical ozone metric D8HourMax represents the highest of the 8-hour moving 

averages during the day. 

Air Quality Model. Air quality management tools that mathematically describe pollution 

transport, dispersion, and related physical and chemical processes in the atmosphere. Air 

quality models (like CMAQ11 and CAMx12) are used to estimate the air pollutant concentration 

at specific locations, which are referred to as receptors, or over a spatial area that has been 

divided into uniform grid squares. The number of receptors or grid cells in a model far 

exceeds the number of monitors one could typically afford to deploy in a monitoring study. 

Therefore, models provide a cost-effective way to analyze pollutant impacts over a wide 

spatial area where factors such as meteorology, topography, and emissions from both local 

and remote sources could be important. BenMAP does not contain an air quality model but 

can use the output from these models to estimate health impacts. 

 
 

 
11 Community Multi-scale Air Quality (CMAQ) Model is available at: https://www.epa.gov/cmaq or 
https://www.cmascenter.org/cmaq/. 
12 Comprehensive Air Quality Model with Extensions (CAMx) is available at: http://www.camx.com/. 

https://www.epa.gov/cmaq
https://www.cmascenter.org/cmaq/
http://www.camx.com/
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Air Quality Surface. A file containing modeled or monitored air pollution data in a series of 

cells; these cells may be a regular shape (such as a 12km by 12km grid) or an irregular shape 

(such as a county or census tract). These surfaces are also referred to as air quality grids. 

BenMAP uses one air quality grid to represent the pre-policy scenario and a second grid to 

represent the post-policy scenario. These pre-policy and post-policy grids must share the 

same geographic structure. The program calculates the difference between the pre- and post-

policy grids as an input to the health impact function.  

Attainment. The state of meeting the National Ambient Air Quality Standard (NAAQS) 

standard for a pollutant and not contributing to a nearby area exceeding the standard. A 

geographical area that meets the NAAQS is called an "attainment area." BenMAP modeling 

results are not designed to designate attainment for regulatory purposes. 

Background Concentration. The concentration of a pollutant, generally in the absence of 

human sources. 

Baseline.  The air quality levels prior to the policy change you are evaluating. Also known as 

the pre-policy scenario, or sometimes referred to as “Business as Usual.” This scenario is 

usually considered to be the reference scenario against which to compare a potential “post-

policy scenario,” in which air quality concentrations are changed from the baseline levels. 

Baseline Incidence. The incidence of a given adverse effect due to all causes including air 

pollution. Also called background incidence rates.   

Batch Run. A configuration that specifies multiple BenMAP analyses all using the same pre-

policy scenario, but with varying post-policy scenarios and/or population years; also, the 

grouped results of such an analysis. Batch functionality allows for setting up multiple 

BenMAP runs using a single pass through the user interface and facilitates managing tasks 
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related to a specific project. Batch runs may be specified for heath impact or exposure 

analyses. 

Beta. The coefficient for the health impact function that measures the strength of the impact 

of air pollution exposure on a health effect. The value of beta (ß) typically represents the 

percent change in a given adverse health impact per unit of pollutant exposure.  

Cessation Lag. This term represents the time that is expected to elapse between a reduction 

in pollutant exposure and the achievement of new steady state health risk level in the 

exposed population. The cessation lag model also specifies the proportion of the overall risk 

reduction occurring in the population during each time step (e.g., year) of the lag period. The 

result of applying the cessation lag model is an expected time stream of health benefits from 

the initial exposure reduction to the end of the lag period, which is then used in the benefits 

valuation step. 

Concentration-Response (C-R) Function. An equation that estimates the relationship 

between adverse health effects and ambient air pollution and is used to derive health impact 

functions (defined below). You will often see that the term C-R function and health impact 

function are used interchangeably.  

Cost of Illness (COI). An estimate of the value of a health effect that includes the direct 

medical costs incurred and indirect impacts such as lost earnings associated with illness. 

These estimates generally understate the true economic value of reductions in risk of a health 

effect because they only include the direct expenditures related to treatment and lost 

earnings but not the value of other impacts such as avoided pain and suffering.  

Deltas. The difference between two data points. As used in BenMAP, mapping the air quality 

deltas shows the change in air pollution between the pre-policy air quality grid and the post-

policy air quality grid.  
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Discount Rate. In a cost-benefit analysis, the discount rate is a measure of the degree to 

which individuals value benefits or costs today more highly than future benefits and costs 

Typically, if a benefit occurs over multiple years, the economic benefit would be discounted.  

Epidemiology. The study of factors affecting the health and illness of populations.  

Exposure Analysis.  The analysis of how pollutant concentrations affect specific populations. 

Exposure analyses produce population-weighted surface level concentrations of a selected 

pollutant at various spatial scales for the entire U.S. population and for U.S. population 

subgroups characterized by race, ethnicity, or other demographic factors. 

FIPS Code. Federal Information Processing Standard codes. FIPS codes uniquely identify 

geographic areas; the number of digits vary depending on the level of geography. Each state 

in the United States is assigned a 2-digit code (e.g., “06” refers to California). Each county is 

assigned a 5-digit code of which the first two digits identify the state to which the county 

belongs (e.g., “06037” refers to Los Angeles County, California). Counties can be further 

subdivided into census tracts, denoted by FIPS codes of 11 digits. 

Grid Cell. One of the many geographic, or spatial, components within a grid definition. These 

can be regularly or irregularly shaped. 

Grid Definition. A BenMAP grid definition provides a means of breaking a geographic region 

into areas of interest (Grid Cells) that allow for spatial variation in data relevant to a benefits 

analysis.  All grid definitions must have a unique (i.e., non-repeating) column and row index. 

BenMAP currently includes one grid definition with uniformly shaped and sized cells (12 km x 

12 km).  

Health Effect. A subset of a health effect set which represents a specific type of adverse 

health effect and may span multiple medical diagnostic codes. For example, the health effect 
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set Chronic Effects - All includes health effects Asthma Incidence, Lung Cancer Incidence, and 

Stroke Incidence.  

Health Effect Set. A group of health impact functions that quantify impacts within certain 

categories, including mortality, acute (short-term) morbidity effects, and chronic (long-term) 

morbidity effects. 

Health Impact Function. An equation that calculates the change in adverse health effects 

associated with a change in exposure to air pollution. Based on a C-R function, a typical 

health impact function accepts inputs specifying the air quality metric and pollutant; the 

change in air pollutant concentration, the size, age, race and ethnicity of the population 

affected; and the baseline rate of occurrence of the adverse health effect being evaluated. 

Incidence. The total number of adverse health effects in a geographic region in a given unit of 

time. In BenMAP, this is the total number of adverse health effects avoided due to a change in 

air pollution levels, often reported for a single year.  

Incidence Rate. The background rate of new health effects per person over a particular 

period of time in a given geographic region. The unit of time is typically a day or a year, but 

could be other periods as well (e.g., warm season). The incidence rate must be expressed at 

the same time scale as the remainder of the health impact function. For example, a health 

impact function quantifying day-to-day changes in premature death must specify a daily 

death rate.  

Income Growth Adjustment. Adjusting certain valuation functions to reflect increases in real 

income over time. Generally, an increase in real income implies an increase in the WTP values 

used to monetize health effects. 
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Inflation Adjustment. Adjusting monetized benefits occurring over different years to a 

constant dollar year (e.g., 2020 dollars) to account for historical or projected future increases 

in prices over time.  

Metadata.  Data that serves to provide context or additional information about other data.  

BenMAP stores a minimum set of standardized metadata fields for imported data files (e.g., 

file name, file date, reference, import date, and description).  For certain data types, 

additional metadata are recorded.   

Micrograms per Cubic Meter (µg/m3). The unit of measure for particulate matter in the 

NAAQS. This unit represents the mass of PM and other pollutants found in a cubic meter of 

air.  

Model Data. Pollutant concentration data that are generated by running an air quality model 

such as CMAQ. This is different from “monitor data,” which are based upon observed 

measurements of pollutant concentrations.  

Monetize. In the context of human health benefits assessment, this is the practice of 

expressing society's preferences for avoiding certain health effects as an economic value 

(e.g., in U.S. dollars). In BenMAP we estimate monetized benefits by using either Willingness 

to Pay or Cost of Illness valuation functions. 

Monitor Data. Pollutant concentration data that are collected from an air quality monitor. 

“Raw” monitor data usually refers to data that are taken directly from measurement 

networks, with no additional processing of the data. Monitor data are different from “model 

data,” which are based upon numerical predictions from an air quality model. Use of monitor 

data is not available in the current version of the tool but is expected in future versions.  

Monitoring. The systematic, long-term assessment of pollutant levels by measuring the 

quantity and types of certain pollutants in the surrounding outdoor air. The U.S. EPA reports 
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monitoring data, as well as other information related to monitoring, available through its Air 

Quality System (AQS): https://www.epa.gov/aqs. 

Monte Carlo Simulation.  A technique used in BenMAP to quantify the confidence intervals 

around mean incidence and economic value estimates by randomly sampling uncertainty 

distributions related to effect coefficients and/or willingness to pay estimates. 

Morbidity. A measure of being diseased or afflicted by an illness (generally non-fatal).  

Mortality. A measure of the number of deaths in a given population.  

National Ambient Air Quality Standards (NAAQS). The U.S. EPA establishes levels for 

pollutants that are considered harmful to public health and the environment. The Clean Air 

Act established two types of national air quality standards. Primary standards set limits to 

protect public health, including the health of “sensitive” populations such as asthmatics, 

children, and the elderly. Secondary standards set limits to protect public welfare, including 

protection against decreased visibility and against damage to animals, crops, vegetation, and 

buildings. The U.S. EPA has set NAAQS for six principal pollutants, which are called “criteria” 

pollutants: carbon monoxide, lead, nitrogen dioxide, ozone, particulate matter (PM2.5, PM10), 

and sulfur dioxide.  

Net Present Value (NPV). The economic value of a stream of monetized benefits discounted 

back to the starting year of the analysis and summed. 

Odds Ratio. A quantitative measure reported in epidemiology studies of the relationship 

between exposure to air pollution and a health outcome. Odds Ratios must be converted to 

beta coefficients to be used in BenMAP. 

Ozone (O3). BenMAP focuses on ground-level or “bad” ozone, which is not emitted directly 

into the air, but is created by chemical reactions between oxides of nitrogen (NOx) and 

https://www.epa.gov/aqs
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volatile organic compounds (VOCs) in the presence of sunlight. Emissions from industrial 

facilities and electric utilities, motor vehicle exhaust, gasoline vapors, and chemical solvents 

are some of the major sources of NOx and VOC. Breathing ozone can trigger a variety of health 

problems, particularly for children, the elderly, and people of all ages who have lung diseases 

such as asthma. Ground level ozone can also have harmful effects on sensitive vegetation and 

ecosystems. 

Particulate Matter. Particulate matter, also known as particle pollution or PM, is a complex 

mixture of extremely small particles and liquid droplets. Particle pollution is made up of 

multiple components, including acids (such as nitrates and sulfates), organic chemicals, 

metals, and soil or dust particles. Once inhaled, these particles can affect the heart and lungs 

and cause serious health effects. Includes PM2.5 (particles less than 2.5 microns in 

aerodynamic diameter), PM10 (particles less than 10 microns in aerodynamic diameter), and 

PM10-2.5 (particles between 2.5 and 10 microns in aerodynamic diameter).  

Parts per Billion (ppb). This unit represents the concentration of the pollutant in a billion 

parts of air. Ozone concentrations in BenMAP are reported in units of ppb.  

Parts per Million (ppm). This unit represents the concentration of the pollutant in a million 

parts of air. Carbon monoxide is often measured in units of ppm.  

Population Exposure versus Personal Exposure. Population (or ambient) exposure refers to 

the average air pollution level measured in a grid cell. In contrast, personal exposure keeps 

track over the course of a day the exposure individuals encounter in different micro-

environments, such as the freeway, outdoors and indoors. BenMAP only represents 

population exposure.  

Population-weighted Air Quality. Modeled or monitored ambient concentrations that have 

been weighted according to the number of people exposed.  
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Post-Policy Scenario. In a modeling study, this is a scenario in which emissions from one or 

more source sectors are changed (increased or decreased) from a given “pre-policy scenario”. 

The post-policy scenario generally represents air quality levels after a new policy has been 

implemented.  

Pre-Policy Scenario. The air quality levels prior to the policy change you are evaluating. The 

pre-policy scenario is sometimes referred to as “Business as Usual.” This scenario is usually 

considered to be the reference scenario against which to compare a potential “post-policy 

scenario,” in which air quality levels are changed from the baseline levels.  

Prevalence Rate. The percentage of individuals in a given population who already have a 

given adverse health condition. Used to calculate changes in health conditions among those 

who already have a health condition, such as asthmatics.  

Regulatory Impact Analysis (RIA). A policy tool used to assess the likely effects of a 

proposed regulation or regulatory change. It usually includes detailed analyses to quantify 

the costs and benefits of the regulation.  

Relative Risk. A measure of the change in risk of an adverse health effect associated with an 

increase in air pollution levels in an epidemiology study. More specifically, relative risk is the 

ratio of the risk of illness with a higher pollution level to the risk of illness with a lower 

pollution level, where the “risk” is defined as the probability that an individual will become ill. 

Also sometimes referred to as a risk ratio or hazard ratio. 

Shapefile. A shapefile is a particular type of GIS file that has a .shp extension. These files are 

accompanied by companion files with .shx and .dbf extensions and can be used to create 

Shapefile Grid Definitions. See http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf 

for more information.  

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
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Task Log. This is a report that contains a record of all the choices involved in creating a 

particular file. The task log is exported when exporting results files from the BenMAP tool.  

Template. A saved configuration from a previous BenMAP run, specifying all the necessary 

details to run a benefits analysis. After loading a template, you may run it as is or make 

changes to one or more elements prior to running.  

Unit Value. The estimated mean economic value of avoiding a single case of a particular 

health effect.  

Valuation Function. Valuation functions are used by BenMAP to estimate the economic 

values of changes in the incidence of health effects. They usually include unit value estimates 

and may also include potential adjustments for inflation, income growth, and discounting.   

Variable Datasets.  Health Impact functions and valuation functions may sometimes refer to 

variables other than those for which BenMAP automatically calculates values.  For example, 

some valuation functions reference the median income within each area of analysis.  To 

facilitate this, BenMAP stores variables for use in functions; these variables may be used 

globally (e.g., inflation adjustments) or may vary geographically (meaning they are associated 

with a particular Grid Definition). 

WTP (Willingness to Pay). The willingness of individuals to pay for a good or service, such as 

a reduction in the risk of illness. In general, economists tend to view an individual's WTP for 

an improvement in environmental quality as the appropriate measure of the value of a risk 

reduction. An individual's willingness to accept (WTA) compensation for not receiving an 

improvement is also a valid measure. However, WTP is generally considered to be a more 

readily available and conservative measure of benefits. 
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Appendix A. Monitor Rollback Algorithms 

This Appendix explains the algorithms BenMAP applies when you perform a “monitor 

rollback” to create an air quality surface. The monitor rollback procedure adjusts the air 

quality monitoring data using simplified rules to reflect hypothetical broad-scale changes in 

air pollution across a given study area. This functionality is not implemented in the current 

version of the web-based tool, though it is planned for a future version. 
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Appendix B. Algorithms for Estimating Air 

Pollution Exposure 

BenMAP groups counts of individuals into what we refer to as “population grid cells,” where 

the grid cells typically correspond to a regular grid such as those used in an air quality 

models, or to a grid defined by political boundaries such as the counties of the United States. 

The default data in the BenMAP web tool allocates the United States population to the same 

12km by 12km grid used in the Community Multiscale Air Quality modeling system (CMAQ). 

BenMAP estimates the air pollution exposure for the population in each grid-cell by assuming 

that people living within a particular grid-cell experience the same air pollution levels.   

The goal of estimating exposure is to provide the necessary input for concentration-response 

functions, so that BenMAP can estimate the impact of air pollution on adverse health effects. 

BenMAP can recognize multiple air pollution metrics. Table B-1 lists the types of metrics 

commonly used in concentration-response functions.  

Table B-1 Example Metrics Used in Concentration-Response Functions for Criteria Air 
Pollutants 

Measurement 
Frequency 

Metric Name Metric Description 

Daily (e.g., PM2.5) Daily Average Daily 24-hour average 

Annual Average Average of four quarterly averages. The four 
quarters are defined as:  Jan-Mar, April-June, 
Jul-Sep, Oct-Dec. 

Hourly (e.g., Ozone) 1-hour Daily Max Highest hourly value from 12:00 A.M. through 
11:59 P.M. 

8-hour Daily Average Average of hourly values from 9:00 A.M. through 
4:59 P.M. 

24-hour Daily Average Average of hours from 12:00 A.M. through 11:59 
P.M. 
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Multiple approaches exist to estimate the exposure to air pollution for the people living 

within a given population grid-cell, including the use of air quality model-based 

concentrations, and data from ground-level measurements at monitors.  

B.1 Direct Modeling 

When using direct modeling data to estimate exposure, BenMAP assumes that all people 

living within a particular air pollution grid-cell experience the air pollution concentration 

estimated by the air quality model for the given air quality metric.  

B.2 Monitor Data 

An alternative approach is to use air pollution monitoring data, where you may choose the 

closest monitor data to the center of a grid-cell or spatially interpolate values based on of 

nearby monitors.  Placeholder: this functionality is planned for a future version of the 

tool. 
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Appendix C. Deriving Health Impact 

Functions 

This Appendix provides of an overview regarding the health impact functions that BenMAP 

uses to estimate the impact of a change in air pollution on adverse health effects. It provides 

a description of the particular types of health impact functions that BenMAP uses.   

The functional form of the relationship between the change in pollutant concentration, Δx, 

and the change in population health response (usually an incidence rate), Δy depends on the 

functional form of the C-R function from which it is derived, and this depends on the 

underlying relationship assumed in the epidemiological study chosen to estimate a given 

effect. For expository simplicity, the following subsections refer simply to a generic adverse 

health effect, “y” and uses particulate matter (PM) as the pollutant - that is, Δx = ΔPM - to 

illustrate how the relationship between Δx and Δy is derived from each of several different C-

R functions.   

Estimating the relationship between ΔPM and Δy can be thought of as consisting of three 

steps:   

1. choosing a functional form of the relationship between PM and y (the C-R function),   

2. estimating the values of the parameters in the C-R function assumed, and   

3. deriving the relationship between ΔPM and Δy (the health impact function) from the 

relationship between PM and y (the C-R function).   

Epidemiological studies have used a variety of functional forms for C-R functions. Some 

studies have assumed that the relationship between adverse health and pollution is best 

described by a linear form, where the relationship between y and PM is estimated by a linear 
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regression in which y is the dependent variable and PM is one of several independent 

variables. Log-linear regression and logistic regression are other common forms.   

Note that the log-linear form used in the epidemiological literature is often referred to as 

“Poisson regression” because the underlying dependent variable is a count (e.g., number of 

deaths), believed to be Poisson distributed. The model parameters may be estimated by 

regression techniques but are often estimated by maximum likelihood techniques. The form 

of the model, however, is still log-linear. 

C.1 Overview 

The relationship between the concentration of a pollutant, x, and the population response, y, 

is called the concentration-response (C-R) function. For example, the concentration of fine 

particulate matter (PM2.5) may be in µg/m3 per day, and the population response may be the 

number of premature deaths per 100,000 population per day. C-R functions are estimated in 

epidemiological studies. A functional form is chosen by the researcher, and the parameters of 

the function are estimated using data on the pollutant (e.g., daily levels of PM2.5) and the 

health response (e.g., daily mortality counts). There are several different functional forms, 

discussed below, that have been used to estimate C-R functions. The one most commonly 

used is the log-linear form, in which the natural logarithm of the health response is a linear 

function of the pollutant concentration.   

For the purposes of estimating benefits, we are not interested in the C-R function itself, 

however, but the relationship between the change in concentration of the pollutant, Δx, and 

the corresponding change in the population health response, Δy. We want to know, for 

example, if the concentration of PM2.5 is reduced by 10 µg/m3, how many premature deaths 

will be avoided? The relationship between Δx and Δy can be derived from the C-R function, as 

described below, and we refer to this relationship as a health impact function.   
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Many epidemiological studies, however, do not report the C-R function, but instead report 

some measure of the change in the population health response associated with a specific 

change in the pollutant concentration. The most common measure reported is the relative 

risk associated with a given change in the pollutant concentration. A general relationship 

between Δx and Δy can, however, be derived from the relative risk. The relative risk and 

similar measures reported in epidemiological studies are discussed in the sections below. The 

derivation of the relationship of interest for BenMAP - the relationship between Δx and Δy - is 

discussed in the subsequent sections. 

C.2 Review Relative Risk and Odds Ratio 

The terms relative risk and odds ratio are related but distinct. Table C-1 provides the basis for 

demonstrating their relationship. 

Table C-1 Relative Risk and Odds Ratio Notation 

Exposure 
Fraction of Population Adverse Effect Measure 

Affected Not Affected Relative Risk Odds 

Baseline Pollutant Exposure y0 1-y0 
y0/yc 

y0/(1-yo) 

Control Pollutant Exposure yc 1-yc yc/(1-yc) 

 
The “risk” that people with baseline pollutant exposure will be adversely affected (e.g., 

develop chronic bronchitis) is equal to y0, while people with control pollutant exposure face a 

risk, y0, of being adversely affected. The relative risk (RR) is simply:  

Equation C-1 

𝑅𝑅𝑅𝑅 =
𝑦𝑦0
𝑦𝑦𝑐𝑐
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The odds that an individual facing high exposure will be adversely affected is:  

Equation C-2 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑦𝑦0

1 − 𝑦𝑦0
 

The odds ratio is then:  

Equation C-3 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
� 𝑦𝑦0

1 − 𝑦𝑦0
�

� 𝑦𝑦𝑐𝑐
1 − 𝑦𝑦𝑐𝑐

�
 

This can be rearranged as follows:  

Equation C-4 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑦𝑦0
𝑦𝑦𝑐𝑐

× �
1 − 𝑦𝑦𝑐𝑐
1 − 𝑦𝑦0

� = 𝑅𝑅𝑅𝑅 × �
1 − 𝑦𝑦𝑐𝑐
1 − 𝑦𝑦0

� 

As the risk associated with the specified change in pollutant exposure gets small (i.e., both y0 

and yc approach zero), the ratio of (1-yc) to (1-y0) approaches one, and the odds ratio 

approaches the relative risk. This relationship can be used to calculate the pollutant 

coefficient in the C-R function from which the reported odds ratio or relative risk is derived, as 

described below. 
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C.3 Linear Model 

A linear relationship between the rate of adverse health effects (incidence rate) and various 

explanatory variables is of the form:  

Equation C-5 

𝑦𝑦 = 𝛼𝛼 + 𝛽𝛽 × 𝑃𝑃𝑃𝑃 

where α incorporates all the other independent variables in the regression (evaluated at their 

mean values, for example) times their respective coefficients. The relationship between the 

change in the rate of the adverse health effect from the baseline rate (y0) to the rate after 

control (yc) associated with a change from PM0 to PMc is then:   

Equation C-6 

∆𝑦𝑦 = 𝑦𝑦0 − 𝑦𝑦𝑐𝑐 = 𝛽𝛽 ∗ (𝑃𝑃𝑃𝑃0 − 𝑃𝑃𝑃𝑃𝑐𝑐) = 𝛽𝛽 ∗ ∆𝑃𝑃𝑃𝑃 

For example, Ostro et al. (1991, Table 5) reported a PM2.5 coefficient of 0.0006 (with a standard 

error of 0.0003) for a linear relationship between asthma and PM2.5 exposure.   

The lower and upper bound estimates for the PM2.5 coefficient are calculated as follows:  

Equation C-7 

𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽 − �1.96 × 𝜎𝜎𝛽𝛽� = 0.0006 − (1.96 × 0.0003) = 1.2 × 10−5 

𝛽𝛽𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛽𝛽 + �1.96 × 𝜎𝜎𝛽𝛽� = 0.0006 + (1.96 × 0.0003) = 0.00119 

It is then straightforward to calculate lower and upper bound estimates of the change in 

asthma. 
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C.4 Log-linear Model 

The log-linear relationship defines the incidence rate (y) as:  

Equation C-8 

𝑦𝑦 = 𝐵𝐵 × 𝑒𝑒𝛽𝛽∗𝑃𝑃𝑃𝑃 

Or, equivalently,  

Equation C-9 

𝑙𝑙𝑙𝑙(𝑦𝑦) = 𝛼𝛼 + 𝛽𝛽 ∗ 𝑃𝑃𝑃𝑃, 

where the parameter B is the incidence rate of y when the concentration of PM is zero, the 

parameter β is the coefficient of PM, ln(y) is the natural logarithm of y, and α = ln(B). Other 

covariates besides pollution clearly affect mortality. The parameter B might be thought of as 

containing these other covariates, for example, evaluated at their means. That is,   

Equation C-10 

𝐵𝐵 = 𝐵𝐵0 × 𝑒𝑒𝛽𝛽1𝑥𝑥1+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛  

where Bo is the incidence of y when all covariates in the model are zero, and x1, ... , xn are the 

other covariates evaluated at their mean values. The parameter B drops out of the model, 

however, when changes in y are calculated, and is therefore not important.   

The relationship between ∆PM and ∆y is:   

Equation C-11 

∆𝑦𝑦 = 𝑦𝑦0 − 𝑦𝑦𝑐𝑐 = 𝐵𝐵�𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽0 − 𝑒𝑒𝛽𝛽𝛽𝛽𝛽𝛽𝑐𝑐� 
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This may be rewritten as:  

Equation C-12 

( )( ) ( )






∆×

−=−×=∆ −−•

PM
yeeBy cPMPMPM

β
ββ

exp
111 0

00

 

where y0 is the baseline incidence rate of the health effect (i.e., the incidence rate before the 

change in PM).   

The change in the incidence of adverse health effects can then be calculated by multiplying 

the change in the incidence rate, ∆y, by the relevant population (e.g., if the rate is number per 

100,000 population, then the relevant population is the number of 100,000s in the 

population).   

When the PM coefficient (β) and its standard error (σβ) are published (e.g., Ostro et al., 1989), 

then the coefficient estimates associated with the lower and upper bound may be calculated 

easily as follows: 

Equation C-13 

𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽 − �1.96 × 𝜎𝜎𝛽𝛽� 

𝛽𝛽𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛽𝛽 + �1.96 × 𝜎𝜎𝛽𝛽�, 

where the adjustment on the mean of ±1.96 times the standard error produces the 2.5th and 

97.5th percentiles of the normal distribution, which are used to approximate a 95% confidence 

interval. These values can be changed to capture different lower and upper bounds. 

Epidemiological studies often report a relative risk for a given ΔPM, rather than the 

coefficient, β (e.g., Schwartz et al., 1995, Table 4). Recall that the relative risk (RR) is simply 

the ratio of two risks: 
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Equation C-14 

PM

c

e
y
yRR ∆•== β0

 

Taking the natural log of both sides, the coefficient in the C-R function underlying the relative 

risk can be derived as:  

Equation C-15 

( )
PM
RRIn

∆
=β

 

The coefficients associated with the lower and upper bounds (e.g., the 2.5th and 97.5th 

percentiles) can be calculated by using a published confidence interval for relative risk, and 

then calculating the associated coefficients.   

Because of rounding of the published RR and its confidence interval, the standard error for 

the coefficient implied by the lower bound of the RR will not exactly equal that implied by the 

upper bound, so an average of the two estimates is used. The underlying standard error for 

the coefficient (σβ) can be approximated by: 

Equation C-16 

96.1
5.2

5.2,
percentile

percentile

ββ
σβ

−
=

 

96.1
5.97

5.97,

ββ
σβ

−
= percentile

percentile
 

2
5.97,5.2, percentilepercentile ββ

β

σσ
σ

+
≅
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C.5 Logistic Model 

In some epidemiological studies, a logistic model is used to estimate the probability of an 

occurrence of an adverse health effect. Given a vector of explanatory variables, X, the logistic 

model assumes the probability of an occurrence is:  

Equation C-17 

( ) 







+

=×= •

•

β

β

β X

X

e
eXoccurrenceproby

1
|

, 

where β is a vector of coefficients. Greene (1997, p. 874) presents models with discrete 

dependent variables, such as the logit model. See also Judge et al. (1985, p. 763). This may be 

rewritten as:  

Equation C-18 

ββ

β

β

β

•−•−

•−

•

•

+
=×

+
= XX

X

X

X

ee
e

e
ey

1
1

1  
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The odds of an occurrence is:  

Equation C-19 

β

β

•−

•−

+
−








+=

−
=

X

X

e

e
y

yodds

1
11

1
1

1
 

β
β

β

β

β

β

β
•

•−

•−

•−

•−

•−

•−

==









+








+=

+
−








+=⇒ X

X

X

X

X

X

X

e
e

e
e

e

e

eodds 1

1

1
1

1
11

1
1

 

⇒ 𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑋𝑋 × 𝛽𝛽 

The odds ratio for the control scenario (oddsc) versus the baseline (odds0) is then:  

Equation C-20 

β

β

β

β

•

•

•−

•−

=
















=









−









−

==
0

0

1

1

1

1

0

00
X

X

X

X
c

c

c

e
e

e

e

y
y

y
y

odds
oddsratioodds

cc

 

The change in the probability of an occurrence from the baseline to the control (Δy), 

assuming that all of the other covariates remain constant, may be derived from this odds 

ratio: 
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Equation C-21 
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When the coefficient (β) and its standard error (σβ) are published (e.g., Pope et al., 1991, Table 

5), then the coefficient estimates associated with the lower and upper bound may be 

calculated easily as follows: 

Equation C-22 

𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛽𝛽 − �1.96 × 𝜎𝜎𝛽𝛽� 

𝛽𝛽𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝛽𝛽 + �1.96 × 𝜎𝜎𝛽𝛽�, 

where the adjustments to the mean of plus or minus 1.96 times the standard error represent 

the 2.5th and 97.5th percentiles of the normal distribution and are used to approximate a 95% 

confidence interval. These values can be changed to capture different lower and upper 

bounds. 

Often the logistic regression coefficients are not published, and only the odds ratio 

corresponding to a specified change in PM is presented (e.g., Schwartz et al., 1994). It is easy 

to calculate the underlying coefficient as follows: 

Equation C-23 

𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = 𝛽𝛽 × ∆𝑃𝑃𝑃𝑃 

⇒ 𝛽𝛽 =
𝑙𝑙𝑙𝑙(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)

∆𝑃𝑃𝑃𝑃
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The coefficients associated with the lower and upper bound estimates of the odds ratios are 

calculated analogously.  The underlying standard error for the coefficient (σβ) can be 

approximated by: 

Equation C-24 

96.1
5.2

5.2,
percentile

percentile

ββ
σβ

−
=

 

96.1
5.97

5.97,

ββ
σβ

−
= percentile

percentile
 

2
5.97,5.2, percentilepercentile ββ

β

σσ
σ

+
≅

 

Sometimes, however, the relative risk is presented. The relative risk does not equal the odds 

ratio, and a different procedure should be used to estimate the underlying coefficient. Note 

that ESEERCO (1994, p. V-21) calculated (incorrectly) the underlying regression coefficient for 

Abbey et al. (1993, Table 5) by taking the logarithm of the relative risk and dividing by the 

change in TSP.   

The relative risk (RR) is simply:  

Equation C-25 

,0

cy
yRR =

 

where y0 is the risk (i.e., probability of an occurrence) at the baseline PM exposure and yc is 

the risk at the control PM exposure.  When the baseline incidence rate (y0) is given, then it is 

easy to solve for the control incidence rate (yc):  
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Equation C-26 

,0

RR
yyc =

 

The odds ratio, may then be calculated: 

Equation C-27 

c

c

y
y

y
y

ratioodds

−
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=
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1 0

0

 

Given the odds ratio, the underlying coefficient (β) may be calculated as before:  

Equation C-28 

,)(
PM

ratiooddsIn
∆

=β
 

The odds ratio and the coefficient calculated from it are dependent on the baseline and 

control incidence rates. Unfortunately, it is not always clear what the baseline and control 

incidence rates should be. Abbey et al. (1995b, Table 2) reported that there are 117 new cases 

of chronic bronchitis out of a sample of 1,631, or a 7.17 percent rate. In addition, they 

reported the relative risk (RR = 1.81) for a new case of chronic bronchitis associated with an 

annual mean concentration “increment” of 45 µg/m3 of PM2.5 exposure.   

Assuming that the baseline rate for chronic bronchitis (y0) should be 7.17 percent, the 

question becomes whether the “increment” of 45 µg/m3 should be added to or subtracted 

from the existing PM2.5 concentration. If added, the control incidence rate (yc) would be 
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greater than the baseline rate (y0), while subtraction would give a control rate less than the 

incidence rate. In effect, one might reasonably derive two estimates of the odds ratio:  

Equation C-29 

( ) 931.1
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( ) 01462.0
45

931.1
1 ==⇒

Inβ
 

( ) 01394.0
45

873.1
2 ==⇒

Inβ
 

An alternative is to simply assume that the relative risk (1.81) is reasonably close to the odds 

ratio and calculate the underlying coefficient. It is easy to show that the relative risk equals:   

Equation C-30 

( ) 00
0 1 yey

y
yRR PM

c

+×−== •∆− β
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Assuming that:  

Equation C-31 

( ) 001 yeye PMPM +×−≅ •∆−•∆− ββ

 

β•∆−≅⇒ PMeRR  

It is then possible to calculate the underlying coefficient:  

Equation C-32 

( ) β≅
∆− PM

RRIn
 

( ) 01319.0
45

81.1
3 ==⇒

Inβ
 

Since this coefficient estimate is based on the assumption that 

Equation C-33 

( ) 001 yeye PMPM +×−≅ •∆−•∆− ββ

, 

it should be used in a C-R function that maintains this assumption. In effect, it should be 

applied to a log-linear C-R function: 

Equation C-34 

( )[ ]10 −×=∆ ∆• PMeyy β
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Using the formula for the change in the incidence rate and assuming a 10 µg/m3 decline in 

PM2.5, it is shown that this results in changes within the bounds suggested by the two 

estimates based on using the estimated odds ratios:  

Equation C-35 

( ) 00914.00717.0
0717.00717.01

0717.
01462.0101 −=−

+×−
=∆ ×e

y
 

( ) 00874.00717.0
0717.00717.01

0717.
01394.0102 −=−

+×−
=∆ ×e

y
 

( ) 00886.010717.0 01319.010
3 −=−×=∆ ×−ey  

In this instance, it seems that simply using the relative risk to estimate the underlying 

coefficient results in a good approximation of the change in incidence. Since it is unclear 

which of the two other coefficients (β1 or β2) should be used - as the published work was not 

explicit - the coefficient based on the relative risk and the log-linear functional form is a 

reasonable approach. 

C.6 Cox Proportional Hazards Model 

Use of a Cox proportional hazards model in an epidemiological study results in a C-R function 

that is log-linear in form. It is often used to model survival times, and as a result, this 

discussion focuses on mortality impacts.   

The Cox proportional hazards model is based on a hazard function, defined as the probability 

that an individual dies at time t, conditional on having survived up to time t (Collet, 1994, p. 
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10). More formally, the hazard function equals the probability density function for the risk of 

dying divided by one minus the cumulative probability density function: 

Equation C-36 

( ) ( )
( )tXF

tXftXh
,1

,,
−

=
 

The proportional hazards model takes the form: 

Equation C-37 

( ) ( ) β•= XethtXh 0, , 

where X is a vector of explanatory variables, β is a vector of coefficients, and h0(t) is the so- 

called “baseline hazard” rate. This terminology differs from that used in most of this 

discussion: this “baseline hazard” is the risk when all of the covariates (X) are set to zero; this 

is not the risk in the baseline scenario.   

The Cox proportional hazards model is sometimes termed a “semi-parametric” model, 

because the baseline hazard rate is calculated using a non-parametric method, while the 

impact of explanatory variables is parameterized. Collet (1994) details the estimation of Cox 

proportional hazards models; in particular, see Collet’s discussion (pp. 95-97) of 

nonparametric estimation of the baseline hazard.   
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Taking the ratio of the hazard functions for the baseline and control scenarios gives the 

relative risk:  

Equation C-38 

( )
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β
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00
0

,
,

, 

where it is assumed that the only difference between the baseline and control is the level of 

PM pollution.   

The relative risk is often presented rather than the coefficient β, so it is necessary to estimate 

β in order to develop the functional relationship between ∆PM and ∆y, as described 

previously for log-linear C-R functions. 
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Appendix D. U.S. Health Incidence & 

Prevalence Data in BenMAP 

Health impact functions developed from log-linear or logistic models estimate the percent 

change in an adverse health effect associated with a given pollutant change. In order to 

estimate the absolute change in incidence using these functions, we need the baseline 

incidence rate of the adverse health effect. And for certain health effects, such as asthma 

exacerbation, we need a prevalence rate, which estimates the percentage of the general 

population with a given ailment like asthma. This appendix describes the data used to 

estimate baseline incidence and prevalence rates for the health effects considered in this 

analysis.   

D.1 Mortality 

This section describes how we developed county mortality rates for the years 2015 through 

2050 to use in BenMAP. First, we describe the source of 2012-2014 baseline mortality data and 

how we calculated county-level mortality rates. We then describe how we used national-level 

Census mortality rate projections to develop county-level mortality rate projections for years 

2015-2060.   

D.1.1 Mortality Data for 2012-2014 

We obtained county-level mortality and population data from 2012-2014 for 11 causes for the 

contiguous United States by downloading the data from the Centers for Disease Control 

(CDC) WONDER database (http://wonder.cdc.gov).  

Since the detailed mortality data obtained from CDC do not include population, we combined 

them with U.S. Census Bureau population estimates exported from BenMAP. We then 

http://wonder.cdc.gov/
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generated age-, cause-, and county-specific mortality rates using the following formula 

(Equation D-1):   

Equation D-1 

𝑅𝑅𝑖𝑖,𝑗𝑗,𝑘𝑘 =
𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2012) + 𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2013) + 𝐷𝐷𝑖𝑖,𝑗𝑗,𝑘𝑘(2014)
𝑃𝑃𝑖𝑖,𝑘𝑘(2012) + 𝑃𝑃𝑖𝑖,𝑘𝑘(2013) + 𝑃𝑃𝑖𝑖,𝑘𝑘(2014)  

where Ri,j,k is the mortality rate for age group i, cause j, and county k; D is the death count; and 

P is the population.   

For county-age group cells with fewer than 10 deaths, CDC WONDER suppresses the exact 

death count. For these observations, a mortality rate cannot be calculated. For each 

combination of age group and mortality cause, we used the following procedure to deal with 

suppressed counts. 

For each combination of state, age group and mortality cause, we grouped counties with 

unsuppressed mortality figures and summed their reported death counts. We then 

subtracted these unsuppressed deaths from the state-level age- and cause-specific death 

count, which includes suppressed deaths. We divided the resulting state-wide death count in 

suppressed counties by the age-specific populations in those counties. This calculation 

resulted in an age- and cause- specific average mortality rate for suppressed counties; 

Equation D-2 

𝑅𝑅𝑠𝑠,𝑖𝑖,𝑗𝑗 =
𝐷𝐷𝑇𝑇,𝑖𝑖,𝑗𝑗 − 𝐷𝐷𝑢𝑢,𝑖𝑖,𝑗𝑗

𝑃𝑃𝑠𝑠,𝑖𝑖,𝑗𝑗
 

Where Rs,i,j is the state average suppressed mortality rate for age group i and cause j; DT,i,j, is the 

total state death count for age group i and cause j; Du,i,j is the aggregated state-level 

unsuppressed death count for age group i and cause j; and Ps,i,j is the aggregated population 

for age group i and cause j in suppressed counties. 
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In some instances, age- and cause-specific death counts were suppressed at both the county 

and state level. In these cases, we substituted national-level age- and cause-specific mortality 

rates for the respective missing county mortality rates. 

Following CDC WONDER (http://wonder.cdc.gov), we treated mortality rates as “unreliable” 

when the death count is less than 20. For each combination of age group and mortality cause, 

we used the following procedure to deal with the problem of “unreliable” rates:   

For a given state, we grouped the counties where the death count was less than 20 and 

summed those death counts across those counties. If the sum of deaths was greater than or 

equal to 20, we then summed the populations in those counties, and calculated a single rate 

for the “state collection of counties” by dividing the sum of deaths by the sum of populations 

in those counties. This rate was then applied to each of those “unreliable” counties.   

If the sum of deaths calculated in the above step was still less than 20, the counties in the 

“state collection of counties” were not assigned the single rate from the above step. Instead, 

we proceeded to the regional level, according to the regional definitions shown below in 

Table D-1. In each region, we identified all counties whose death counts were less than 20 

(excluding any such counties that were assigned a rate in the previous step). We summed the 

death counts in those counties. If the sum of deaths was greater than or equal to 20, we then 

summed the populations in those counties, and calculated a single rate for the “regional 

collection of counties” by dividing the sum of deaths by the sum of populations in those 

counties. This rate was then applied to each of those counties in the “regional collection of 

counties.”  
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Table D-1 Regional Definitions from U.S. Census 

Region States Included 

Northeast Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New 
York, New Jersey, Pennsylvania 

Midwest Ohio, Indiana, Illinois, Michigan, Wisconsin, Minnesota, Iowa, Missouri, North Dakota, 
South Dakota, Nebraska, Kansas 

South Delaware, Maryland, District of Columbia, Virginia, West Virginia, North Carolina, 
South Carolina, Georgia, Florida, Kentucky, Tennessee, Alabama, Mississippi, 
Arkansas, Louisiana, Oklahoma, Texas 

West Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada, 
Washington, Oregon, California, Alaska, Hawaii 

 

If the sum of deaths calculated in the previous (regional) step was still less than 20, the 

counties in the “regional collection of counties” were not assigned the single rate from the 

above step. Instead, we proceeded to the national level, identifying all counties in the nation 

whose death counts were less than 20 (excluding any such counties that were assigned a rate 

in the previous steps). We summed the death counts in those counties and divided by the 

sum of the populations in those counties to derive a single rate for the “national collection of 

counties.” This rate was then applied to each of those counties in the “national collection of 

counties.” In these cases where national adjustment still did not yield a death count greater 

than 20, we simply calculated a single rate for the “national collection of counties, even 

though it was “unreliable,” and assigned it to those counties in the “national collection of 

counties.”  
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Table D-2 National Mortality Rates (per 100 people per year) by Health Effect and Age 
Group, 2012-2014 

Mortality 
Category 

ICD-10 
codes Infant* 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Mortality, 
All Cause 

All 0.19242 0.01951 0.07804 0.10665 0.17264 0.40542 0.86162 1.79670 4.62837 13.5803
4 

Mortality, 
Non-
Accidental 

A00-R99 0.15747 0.00949 0.01874 0.04112 0.10876 0.33084 0.79395 1.73208 4.49595 13.2086
7 

Mortality, 
Respiratory 

J00-J98 0.01250 0.00102 0.00127 0.00253 0.00570 0.02013 0.06560 0.20585 0.57827 1.42362 

Mortality, 
Chronic 
Lung 

J40-J47, 
J67 

0.00052 0.00032 0.00040 0.00074 0.00186 0.01033 0.04045 0.13873 0.36008 0.68593 

Mortality, 
Lung 
Cancer 

C34 0.00000 0.00001 0.00007 0.00033 0.00282 0.02378 0.07992 0.19701 0.32952 0.31820 

Mortality, 
Ischemic 
Heart 
Disease 

I20-I25 0.00018 0.00004 0.00039 0.00234 0.01242 0.04854 0.12174 0.25698 0.68000 2.27271 

Mortality, 
Cardio-
Pulmonary 

I00-I78, 
J10-J18, 
J40-J47, 
J67 

0.01365 0.00069 0.00099 0.00214 0.00502 0.01794 0.05877 0.18453 0.51055 1.26213 

Mortality, 
NCD + LRI 

** 0.08961 0.00618 0.01168 0.02751 0.08129 0.26214 0.63767 1.37694 3.44731 9.47467 

Mortality, 
Lower 
Respiratory 
Infection 

A48.1, A70, 
B97.4-
B97.6, J09-
J15.8, J16, 
J20-J21, 
P23.0-
P23.4, U04 

0.00249 0.00618 0.01168 0.00030 0.00062 0.00112 0.00196 0.00300 0.00758 0.02693 

Mortality, 
Cerebro-
vascular 

G45-G46.8, 
I60-I63.9, 
I65-I66.9, 
I67.0-I67.3, 
I67.5-I67.6, 
I68.1-I68.2, 
I69.0-I69.3 

0.00097 0.00012 0.00034 0.00096 0.00314 0.00809 0.01455 0.02892 0.08553 0.20863 

Mortality, 
COPD 

J40-J44, 
J47 

0.00048 0.00005 0.00004 0.00015 0.00102 0.00904 0.03888 0.13689 0.35661 0.67457 

*We estimate post-neonatal mortality (deaths after the first month) for infants because the health impact function (see 
Appendix E) estimates post-neonatal mortality. Neonatal deaths were removed from the infant mortality total, and total 
infant population was used as the denominator in post-neonatal mortality incidence. 
**For a full list of codes for non-communicable diseases (NCD) and lower respiratory infections (LRI), see the IHME GBD Code 
mapping: http://ghdx.healthdata.org/record/ihme-data/gbd-2017-cause-icd-code-mappings. 

http://ghdx.healthdata.org/record/ihme-data/gbd-2017-cause-icd-code-mappings
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D.1.2 Mortality Rate Projections 2015-2060 

To estimate age- and county-specific mortality rates in years 2015 through 2060, we 

calculated annual adjustment factors, based on a series of Census Bureau projected national 

mortality rates (for all- cause mortality), to adjust the age- and county-specific mortality rates 

calculated using 2012-2014 data as described above. We used the following procedure:   

For each age group, we obtained the series of projected national mortality rates from 2013 to 

2050 (see the 2013 rate in Table D-3) based on Census Bureau projected life tables.   

We then calculated, separately for each age group, the ratio of Census Bureau national 

mortality rate in year Y (Y = 2014, 2015, ..., 2060) to the 2013 rate. These ratios are shown for 

selected years in Table D-4.   

Finally, to estimate mortality rates in year Y (Y = 2015, 2020, ..., 2060) that are both age-group-

specific and county-specific, we multiplied the county- and age-group-specific mortality rates 

for 2012-2014 by the appropriate ratio calculated in the previous step. For example, to 

estimate the projected mortality rate in 2015 among ages 18-24 in Wayne County, MI, we 

multiplied the mortality rate for ages 18-24 in Wayne County in 2012-2014 by the ratio of 

Census Bureau projected national mortality rate in 2015 for ages 18-24 to Census Bureau 

national mortality rate in 2013 for ages 18-24. 
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Table D-3 All-Cause Mortality Rate (per 100 people per year), by Source, Year, and 
Age Group 

Source & Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Calculated 
CDC 2012-2014 0.192* 0.020 0.078 0.107 0.173 0.405 0.862 1.797 4.628 13.580 

Census Bureau 
2013** 0.654 0.029 0.088 0.102 0.183 0.387 0.930 2.292 5.409 13.091 

*The Census Bureau estimate is for all deaths in the first year of life. BenMAP uses post-neonatal mortality (deaths after the 
first month, i.e., 0.23 per 100 people) because the health impact function (see Appendix E) estimates post- neonatal 
mortality. For comparison purpose, we also calculated the rate for all deaths in the first year, which is 0.684 per 100 people).   
**For a detailed description of the model, the assumptions, and the data used to create Census Bureau projections, see the 
working paper, “Methodology and Assumptions for the 2012 National Projections,” which is available on 
http://www.census.gov/population/projections/files/methodology/methodstatement12.pdf 

Table D-4 Ratio of Future Year All-Cause Mortality Rate to 2013 Estimated All-Cause 
Mortality Rate, by Age Group 

Year Infant 1-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

2015 0.93 0.93 0.96 1.02 0.96 0.96 1.01 1.02 1.03 1.00 

2020 0.94 0.94 0.98 1.04 0.97 0.98 1.02 1.03 1.03 1.00 

2025 0.85 0.81 0.74 0.80 0.75 0.77 0.85 0.91 0.93 0.97 

2030 0.81 0.75 0.66 0.70 0.67 0.69 0.78 0.86 0.89 0.92 

2035 0.76 0.70 0.58 0.62 0.60 0.62 0.71 0.81 0.87 0.87 

2040 0.73 0.65 0.51 0.53 0.53 0.56 0.64 0.76 0.84 0.86 

2045 0.70 0.60 0.45 0.46 0.46 0.50 0.58 0.71 0.80 0.86 

2050 0.67 0.56 0.39 0.40 0.40 0.44 0.53 0.66 0.77 0.87 

2055 0.64 0.52 0.34 0.35 0.35 0.39 0.48 0.62 0.73 0.88 

2060 0.61 0.48 0.30 0.30 0.31 0.34 0.43 0.58 0.70 0.87 

 

D.1.3 Race-Stratified Mortality Incidence 

To estimate race-stratified and age-stratified incidence rates at the county level, we 

downloaded all-cause and respiratory mortality data from 2007 to 2016 from the CDC 
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WONDER mortality database (https://wonder.cdc.gov/). Race-stratified incidence rates were 

calculated for the following age groups: < 1 year, 1-4 years, 5-14 years, 15-24 years, 25-34 

years, 35-44 years, 45-54 years, 55-64 years, 65-74 years, 75-84 years, and 85+ years.13 To 

address the frequent county-level data suppression for race-specific death counts, we 

stratified the county-level data into two broad race categories, White and Non-White. In a 

later step, we stratified the non-White incidence rates by race (Black, Asian, Native American) 

using the relative magnitudes of incidence values by race at the regional level, described in 

more detail below.  

We followed the methods outlined in section D.1.1 with one notable difference in 

methodology; we included an intermediate spatial scale between county and state for 

imputation purposes. We designated urban and rural counties within each state using CDC 

WONDER and, where possible, imputed missing data using the state-urban and state-rural 

classifications before relying on broader statewide data. We followed methods for dealing 

with suppressed and unreliable data at each spatial scale as described in section D.1.1. 

A pooled non-White incidence rate inherently underestimates the mortality risk for some race 

groups and overestimates mortality risk for others. To estimate county-level mortality rates 

by individual race (Black, Asian, Native American), we applied regional race-specific incidence 

relationships to the county-level pooled non-White incidence rates. We calculated a weighted 

average of race-specific incidence rates using regional incidence rates for each 

region/age/race group normalized to one reference population (the Asian race group) and 

county population proportions based on race-specific county populations from CDC WONDER 

where available. In cases of population suppression across two or more races per county, we 

 
 

 
13 Infant mortality dates for race- and ethnicity-stratified datasets do not currently exclude neonatal deaths. 

https://wonder.cdc.gov/
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replaced all three race-specific population proportions derived from CDC WONDER with 

population proportions derived from 2010 Census data in BenMAP. 

D.1.4 Ethnicity-Stratified Mortality Incidence 

To estimate ethnicity-stratified and age-stratified incidence rates at the county level, we 

downloaded all-cause and respiratory mortality data from 2007 to 2016 from the CDC 

WONDER mortality database (https://wonder.cdc.gov/). Ethnicity-stratified incidence rates 

were calculated for the following age groups: < 1 year, 1-4 years, 5-14 years, 15-24 years, 25-34 

years, 35-44 years, 45-54 years, 55-64 years, 65-74 years, 75-84 years, and 85+ years. We 

stratified county-level data by two groups, Hispanic and non-Hispanic, and did not stratify 

further by race due to suppression constraints. We followed the methods outlined in section 

D.1.1 to deal with suppressed and unreliable data. We also included an intermediate spatial 

scale between county and state designating urban and rural counties for imputation 

purposes, described in detail in section D.1.3. 

D.1.5 Ethnicity-Adjusted, Race-Stratified Mortality Incidence 

To estimate all-cause mortality incidence rates stratified by both race and ethnicity, the race-

stratified incidence dataset detailed in section D.1.3 was adjusted using correction factors 

developed from regional incidence rates. We downloaded mortality data per Census Region 

between 2007-2016 from the CDC WONDER mortality database (https://wonder.cdc.gov/) for 

age groups <25 and >25. One set of data was race-stratified incidence for those of Hispanic 

origin, and the other was race-stratified incidence for all ethnicities. The dataset for race-

stratified incidence without Hispanic origin (non-Hispanic) was back-calculated from these 

datasets.   

https://wonder.cdc.gov/
https://wonder.cdc.gov/
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A correction factor was developed between the Hispanic and non-Hispanic rates for each 

region, race, and age combination. For example, a Hispanic correction factor for the race 

group “White” was calculated for a region by dividing the White-Hispanic rate by the White-

all-ethnicities rate. A non-Hispanic correction factor was calculated for a region by dividing 

the White-non-Hispanic rate by the White-all-ethnicities rate. These correction factors were 

applied to the county-level race-stratified mortality incidence dataset to find both race and 

ethnicity stratified values.  

D.2 Hospitalizations 

Hospitalization rates were calculated using data from the Healthcare Cost and Utilization 

Project (HCUP). HCUP is a family of health care databases developed through a Federal-State-

Industry partnership and sponsored by the Agency for Healthcare Research and Quality 

(AHRQ). HCUP products include the State Inpatient Databases (SID), the State Emergency 

Department Databases (SEDD), the Nationwide Inpatient Sample (NIS), and the Nationwide 

Emergency Department Sample (NEDS). HCUP databases can be obtained from the following 

data services:   

HCUP Central Distributor: Many of the HCUP databases are available for purchase through 

the HCUP Central Distributor. The databases include detailed information for individual 

discharges, such as primary diagnosis (in ICD-9 codes), patient’s age and residence county. 

HCUP categorizes hospital admissions in various ways. Hospitalization admissions are 

reported as emergency (admitted from the emergency department), urgent (admitted from 

another hospital), elective (admitted from another health facility, including long-term care), 

newborn (admitted for delivery), trauma (not used by all states), or other/missing/invalid.  

While a substantial subset of the ISA-identified literature evaluating respiratory 

hospitalizations restricted analyses to emergency hospital admissions (EHAs), all hospital 

admission baseline incidence data within BenMAP reflects total hospital admissions due to 
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time constraints limiting the ability to stratify incidence by admission type. In general, the 

vast majority of respiratory and cardiovascular hospitalizations appear to be emergency or 

urgent admissions. As such, the total hospital admissions rates in BenMAP should largely 

align with analogous EHA rates (albeit biased upward due to the small share of 

hospitalizations that are elective). 

HCUP State Partners: Some HCUP participating states do not release their data to the 

Central Distributor; however, the data may be obtained through contacting the State 

Partners. South Carolina provided county-level data. 

HCUPnet: This is a free, on-line query system based on data from HCUP. It provides access to 

summary statistics at the state, regional and national levels.   

Figure D-1 shows the level of hospitalization data (e.g, discharge-level or state-level) for each 

state. Note that for some states neither discharge-level, county-level nor state-level data 

were available. In such cases we used regional statistics from HCUPnet to estimate 

hospitalization rates for those states. The data year for states using HCUPnet data is 2014. For 

discharge-level data, the data year for most states is 2014; however, some states provided 

data for 2011 (CA, MS); 2012 (ME); and 2013 (AR, MA, MD, NV, SD, UT). We assume 

hospitalization rates are reasonably constant from 2011-2014 and consider all as 2014 rates. 
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Figure D-1 Hospitalization Data from HCUP 

 
More information about HCUP can be found at http://www.hcup-us.abrq.gov/ 

The procedures for calculating hospitalization rates are summarized as follows:   

For states with discharge-level data:   

• We calculated age-, health effect-, and county-specific hospitalization counts. South 

Carolina was the only state that, while not providing discharge-level data, did provide 

county-level data for each age group-effect combination.   

• The above calculation excluded hospitalizations with missing patient age or county 

FIPS, which may lead to underestimation of rates. Therefore, we scaled up the 

previously calculated age-, effect-, and county-specific counts using an adjustment 

factor obtained as follows: 

http://www.hcup-us.abrq.gov/
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o We first counted the number of discharges for a specific health effect in the 

state including those discharges with missing age or county FIPS.  

o We then counted the number of discharges for the health effect in the state 

excluding those records with missing age or county FIPS.   

o The adjustment factor is the ratio of the two counts. 

• For California and West Virginia, patient county was unavailable for all observations. 

For these two states, we used hospital county in place of patient county. 

• For health outcomes deemed acute (acute myocardial infarction; cerebrovascular 

events; stroke; pneumonia; lower respiratory infection; acute cases of asthma), we 

distributed patients within the hospital state in cases where the patient resided out of 

state. We assume that everyone admitted to the hospital in a given state developed 

that acute condition while in that state. 

• We calculated hospitalization rates for each county by dividing the adjusted county-

level hospitalization counts by the Census estimated county-level population for the 

corresponding year (2011 - 2014). Following CDC Wonder, we treated rates as 

“unreliable” when the hospitalization count was less than 20, using the same 

procedure we used for mortality rates (see Section D.1.1).   

For states with summarized state statistics (from HCUPnet) we calculated the state-, age-, 

effect- specific hospitalization rates and applied them to each county in the state. We used 

the previously described procedure to adjust the “unreliable” rates.   

For states without discharge-level or state-level data:   

• We obtained the effect-specific hospitalization counts in each region from 

HCUPnet/NIS (we refer to this count for the ith effect in the jth region as “TOTALij”)   

• For those states in the jth region that do have discharge-level or state-level data, we 

summed the hospital admissions by effect (we refer to this count for the ith effect in 

the jth region as “SUB ij”).   
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• We then estimated the hospitalization count for states without discharge or state data 

for the ith effect in the jth region as TOTALij - SUB ij. Note that while this count is 

effect- and region- specific, it is not age-specific. We obtained the distribution of 

hospital admission counts across age groups based on the Central Distributor data 

and assumed the same distribution for the HCUPnet hospitalizations. We then applied 

this distribution to the estimated hospital counts (i.e., TOTALij - SUB ij) to obtain 

effect-, region-, and age-specific counts.  

• Using the corresponding age- and region-specific populations in BenMAP from Woods 

and Poole (2015), we calculated age-specific hospitalization rates for the ith effect in 

the jth region and applied them to those counties in the region that didn’t have 

discharge-level or state-level data.   

The health effects in hospitalization studies are defined using different combinations of ICD 

codes. Rather than generating a unique baseline incidence rate for each ICD code 

combination, for the purposes of this analysis, we identified a core group of hospitalization 

rates from the studies and applied the appropriate combinations of these rates in the health 

impact functions:   

• congestive heart failure (ICD-9 428)   

• dysrhythmia (ICD-9 427)   

• heart rhythm disturbances (ICD-9 426-427)   

• acute myocardial infarction (ICD-9 410)   

• ischemic heart disease - 1 (ICD-9 410-414)   

• ischemic heart disease - 2 (ICD-9 410-414, 429)   

• ischemic heart disease (less myocardial infarction) (ICD-9 411-414)  

• all cardiovascular (ICD-9 390-429)   

• all cardiovascular (less myocardial infarctions) (ICD-9 390-409, 411-429)   

• cardiovascular, cerebrovascular and peripheral vascular diseases (ICD-9 410-414, 429, 

426-427, 428, 430-438, 440-449)   
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• all cardiac outcomes (ICD-9 390-459)   

• cerebrovascular events (ICD-9 430-438)  

• stroke (ICD-9 431-437)   

• peripheral vascular disease - 1 (ICD-9 440-448) 

• peripheral vascular disease - 2 (ICD-9 440-449)   

• all respiratory (ICD-9 460-519) 

• respiratory illness - 1 (ICD-9 466, 480-486, 490-493)  

• respiratory illness -2 (ICD-9 464-466, 480-487, 490-492)   

• chronic lung disease (ICD-9 490-496)   

• chronic lung disease (less asthma) (ICD-9 490-492, 494-496)   

• chronic lung disease (less asthma) -2 (ICD-9 490-492, 494, 496)   

• chronic lung disease (less asthma) -3 (ICD-9 490-492)   

• chronic lung disease (less asthma) -4 (ICD-9 491,492, 494, 496)   

• pneumonia (ICD-9 480-486)  

• asthma (ICD-9 493)   

• lower respiratory infection (ICD-9 466.1, 466.0, 480-487, 490, 510-511)  

• respiratory – 1 (ICD-9 491, 492, 493, 496) 

• respiratory – 2 (ICD-9 464-466, 480-487, 490-492, 493) 

• alzheimer’s disease (ICD-9 331.0) 

• parkinson’s disease (ICD-9 332) 

In addition to the hospitalization effects above, we developed a set of county level baseline 

incidence for one EHA effect, All Respiratory (see Section E.7.8 for epidemiological 

description). We generated the EHA rates by applying the HCUPnet national ratio of All 

Respiratory hospitalizations originating from the emergency department (77%) to the county 

level incidence rates developed from the discharge and state-level data.  

For each C-R function, we selected the baseline rate or combination of rates that most closely 

matches to the study health effect definition. For studies that define chronic lung disease as 
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ICD 490- 492, 494-496, we subtracted the incidence rate for asthma (ICD 493) from the chronic 

lung disease rate (ICD 490-496). In some cases, the baseline rate will not match exactly to the 

health effect definition in the study. For example, Burnett et al. (2001) studied the following 

respiratory conditions in infants <2 years of age: ICD 464.4, 466, 480-486, 493. For this C-R 

function we apply an aggregate of the following rates: ICD 464, 466, 480-487, 493. Although 

they do not match exactly, we assume that relationship observed between the pollutant and 

study-defined health effect is applicable for the additional codes. Table D-5 presents a 

summary of the national hospitalization rates for 2014 from HCUP. 

Table D-5 Hospitalization Rates (per 100 people per year), by Health Effect and Age 

Hospitalization 
Category 

ICD-9 
Code 

Age  
0-1 2-17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Respiratory 

All Respiratory 
460-
519 2.387 0.363 0.166 0.212 0.340 0.737 1.297 2.292 4.151 6.343 

Pneumonia 480-
486 0.477 0.101 0.039 0.063 0.103 0.196 0.336 0.640 1.426 2.660 

Chronic Lung 
Disease 

490-
496 0.226 0.151 0.041 0.056 0.105 0.281 0.496 0.837 1.276 1.306 

Asthma 493 0.217 0.147 0.036 0.048 0.076 0.123 0.136 0.157 0.218 0.243 

Cardiovascular 

All Cardiovascular 
390-
429 0.044 0.017 0.061 0.138 0.377 0.914 1.747 3.131 5.886 8.832 

Acute Myocardial 
Infarction, 
Nonfatal 

410 0.000 0.000 0.002 0.010 0.068 0.202 0.380 0.575 0.921 1.332 

Ischemic Heart 
Disease 

410-
414 0.000 0.000 0.002 0.014 0.105 0.350 0.689 1.090 1.570 1.734 

Dysrhythmia 427 0.016 0.005 0.014 0.025 0.057 0.145 0.319 0.684 1.357 1.917 

Congestive Heart 
Failure 

428 0.010 0.001 0.005 0.021 0.061 0.165 0.344 0.700 1.727 3.513 

Stroke 431-
437 0.009 0.003 0.007 0.021 0.070 0.199 0.417 0.816 1.639 2.488 

Neurological 

Alzheimer’s 
Disease 331.0 0.000 0.000 0.00 0.00 0.00 0.0004 0.0035 0.027 0.129 0.248 

Parkinson’s 
Disease 332 0.000 0.000 0.00011 0.0037 0.020 0.025     

 



Appendix D – U.S. Health Incidence & Prevalence Data in BenMAP 
 

 
BenMAP User Manual v0.5  April 2024 

D-17 

D.3 Nonfatal Heart Attacks 

The relationship between short-term particulate matter exposure and heart attacks was 

quantified in a case-crossover analysis by Peters et al. (2001). The study population was 

selected from heart attack survivors in a medical clinic. Therefore, the applicable population 

to apply to the C-R function is all individuals surviving a heart attack in a given year. Several 

data sources are available to estimate the number of heart attacks per year. For example, 

several cohort studies have reported estimates of heart attack incidence rates in the specific 

populations under study. However, these rates depend on the specific characteristics of the 

populations under study and may not be the best data to extrapolate nationally. The 

American Heart Association reports approximately 785,000 new heart attacks per year (Roger 

et al., 2012). Exclusion of heart attack deaths reported by CDC Wonder yields approximately 

575,000 nonfatal cases per year.   

An alternative approach to the estimation of heart attack rates is to use data from the 

Healthcare Cost and Utilization Project (HCUP), assuming that all heart attacks that are not 

instantly fatal will result in a hospitalization. Details about HCUP data are described in 

Section D.2.  According to the 2014 HCUP data there were approximately 608,795 

hospitalizations due to heart attacks (acute myocardial infarction: ICD-9 410, primary 

diagnosis). We used rates based on HCUP data over estimates extrapolated from cohort 

studies because the former is a national database with a larger sample size, which is intended 

to provide reliable national estimates. The incidence rate calculation is also described in 

Section D.2 and the incidence rates for AMI hospitalization are presented in Table D-5.   

Rosamond et al. (1999) reported that approximately six percent of male and eight percent of 

female hospitalized heart attack patients die within 28 days (either in or outside of the 

hospital). We, therefore, applied a factor of 0.93 to the estimated number of PM-related acute 

myocardial infarctions to exclude the number of cases that result in death within the first 

month. Note that we did not adjust for fatal AMIs in the incidence rate estimation, due to the 
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way that the epidemiological studies are designed. Those studies consider total admissions 

for AMIs, which includes individuals living at the time the studies were conducted. Therefore, 

we use the definition of AMI that matches the definition in the epidemiological studies. 

D.4 Emergency Department Visits 

The data source for emergency department/room (ED or ER) visits is also HCUP, i.e., SID, 

SEDD, and NEDS. And the types of data providers are also the same as those described in 

Section D.2. Figure D-2 shows the emergency department data in each state. 

Figure D-2 Emergency Department Data from HCUP 

 

The calculation of ER visit rates is also similar to the calculation of hospitalization rates, 

except for the following differences:   
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The SEDD databases include only those ER visits that ended with discharge. To identify the ER 

visits that ended in hospitalization, we used a variable called “admission source” in the SID 

databases. Admission source identified as “emergency room” indicates that the hospital 

admission came from the ER - i.e., the ER visit ended in hospitalization. For each combination 

of age group, health effect, and county, we summed the ER visits that ended with discharge 

and those that resulted in hospitalization.   

The data year varies across the states from 2011 to 2014; we assumed that ER visit rates are 

reasonably constant across these three years and consider them as 2014 rates.   

Instead of using HCUPnet/NIS in the last step as described in Section D.2., we used 

HCUPnet/NEDS to calculate ER visit rates for states without discharge level or state level data. 

Table D-6 presents the estimated asthma emergency room rates by health effect and age 

group. 
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Table D-6 Emergency Department Visit Rates (per 100 people per year) by Health 
Effect and Age Group 

Emergency 
Department 
Category 

ICD-9 
Codes 

Age 0-
17 18-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

Asthma 493 0.959 0.601 0.556 0.538 0.552 0.408 0.331 0.368 0.350 

Respiratory 

491-
493, 
460-
466, 
477.0-
477.9, 
480-
486, 
496, 
786.07, 
786.09 

6.069 3.214 2.837 2.332 2.447 2.418 2.908 4.382 5.651 

Cardiovascular 

410-
414, 
427-
428, 
433-
437, 
440.0-
440.9, 
443-
445, 
451-453 

0.030 0.107 0.212 0.496 1.151 2.023 3.451 6.726 11.028 

All Cardiac 
Outcomes 390-459 0.067 0.314 0.568 1.105 2.021 3.086 4.921 9.345 14.596 

 

D.5 School Loss Days 

Epidemiological studies have examined the relationship between air pollution and a variety 

of measures of school absence. These measures include: school loss days for all causes, 

illness- related, and respiratory illness-related. We have two sources of information. The first 

is the National Center for Education Statistics, which provided an estimate of all-cause school 

loss days, and the other is the National Health Interview Survey (Adams et al., 1999, Table 47), 

which has data on different categories of acute school loss days. Table D-7 presents the 

estimated school loss day rates. Further detail is provided below on these rates. 
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Table D-7 School Loss Day Rates (per student per year) 

Type Northeast Midwest South West 

Respiratory illness-related 
absences 

1.3 1.7 1.1 2.2 

Illness-related absences 2.4 2.6 2.6 3.7 

All-cause 9.9 9.9 9.9 9.9 
* We based illness-related school loss day rates on data from the 1996 NHIS and an estimate of 180 school days per year. This 
excludes school loss days due to injuries. We based the all-cause school loss day rate on data from the National Center for 
Education Statistics. 

All-Cause School Loss Day Rate   

Based on data from the U.S. Department of Education (1996, Table 42-1), the National Center 

for Education Statistics estimates that for the 1993-1994 school year, 5.5 percent of students 

are absent from school on a given day. This estimate is comparable to study-specific 

estimates from Chen et al. (2000) and Ransom and Pope (1992), which ranged from 4.5 to 5.1 

percent.   

Illness-Related School Loss Day Rate   

The National Health Interview Survey (NHIS) has regional estimates of school loss days due to 

a variety of acute conditions (Adams et al., 1999). NHIS is a nationwide sample-based survey 

of the health of the noninstitutionalized, civilian population, conducted by NCHS. The survey 

collects data on acute conditions, prevalence of chronic conditions, episodes of injury, 

activity limitations, and self-reported health status. However, it does not provide an estimate 

of all-cause school loss days.   

In estimating illness-related school loss days, we started with school loss days due to acute 

problems (Adams et al., 1999, Table 47) and subtracted lost days due to injuries, in order to 

match the definition of the study used in the C-R function to estimate illness-related school 

absences (Gilliland et al., 2001). We then divided by 180 school days per to estimate illness- 

related school absence rates per school day. Similarly, when estimating respiratory illness-
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related school loss days, we use data from Adams et al. (1999, Table 47). Note that we 

estimated 180 school days in a year to calculate respiratory illness-related school absence 

rates per year. 

D.6 Asthma-Related Health Effects 

Several studies have examined the impact of air pollution on asthma development or 

exacerbation. Many of the baseline incidence rates used in the health impact functions are 

based on study-specific estimates. The baseline rates for the various health effects are 

described below and summarized in Table D-9. The prevalence of asthma is summarized in 

Table D-10. 
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Table D-8 Asthma-Related Health Effects Incidence Rates 

Health Effect Age Parameter Rate Source 

New Onset Asthma 0-4 Incidence 0.0234 

Winer et al. (2012, 
Table 1 & Table 2) 

New Onset Asthma 5-11 Incidence 0.0111 

New Onset Asthma 12-17 Incidence 0.0044 

New Onset Asthma 18-34 Incidence 0.0040 

New Onset Asthma, Women 35-44 Incidence 0.0051 

New Onset Asthma, Women 45-54 Incidence 0.0046 

New Onset Asthma, Women 55-64 Incidence 0.0059 

New Onset Asthma, Women 65+ Incidence 0.0039 

Asthma Exacerbation, Shortness 
of Breath, African American 

8-13 Prevalence 7.40% 

Ostro et al. (2001, p. 
202) 

Asthma Exacerbation, Wheeze, 
African American 8-13 Prevalence 17.30% 

Asthma Exacerbation, Cough, 
African American 

8-13 Prevalence 14.50% 

Asthma Symptoms, Shortness of 
Breath 5-12 Prevalence 18.50% 

Lewis et al. (2013, p. 
51) 

Asthma Symptoms, Wheeze 5-12 Prevalence 19.40% 

Asthma Symptoms, Cough 5-12 Prevalence 30.10% 

Asthma Symptoms, Chest 
Tightness 

5-12 Prevalence 12.70% 

Asthma Symptoms, Albuterol Use 6-13 Incidence 2.2 
Rabinovitch et al. 
(2006, Table 1) 

Upper Respiratory Symptoms 
(URS) 

9-11 Incidence 124.79 Pope et al. (1991, 
Table 2) 

 

D.6.1 New Onset Asthma 

The annual rate of new asthma onset is estimated from Winer et al. (2012, Table 1 and Table 

2). Winer et al., 2012 identify newly diagnosed asthma from the 2006-2008 Asthma Call-Back 

Survey (ACBS) and Behavioral Risk Factor Surveillance System (BRFSS) as individuals 
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diagnosed by a doctor, or other health professional, within the 12 months prior to the 

surveys. 

D.6.2 Shortness of Breath  

To estimate the annual rate of new shortness of breath episodes among African-American 

asthmatics, ages 8-13, we used the rate reported by Ostro et al. (2001, p.202). To estimate the 

annual rate of new shortness of breath episodes among asthmatic children ages 5-12, we 

used the rate reported by Lewis et al. (2013, p.51). 

D.6.3 Wheeze   

The daily rate of new wheeze episodes among African-American asthmatics, ages 8-13, is 

reported by Ostro et al. (2001, p.202) as 0.076. We multiplied this value by 100 and by 365 to 

get the annual incidence rate per 100 people.  To estimate the annual rate of new wheeze 

episodes among asthmatic children ages 5-12, we used the rate reported by Lewis et al. (2013, 

p.51).   

D.6.4 Cough   

The daily rate of new cough episodes among African-American asthmatics, ages 8-13, is 

reported by Ostro et al. (2001, p.202) as 0.067. We multiplied this value by 100 and by 365 to 

get the annual incidence rate per 100 people. To estimate the annual rate of new cough 

episodes among asthmatic children ages 5-12, we used the rate reported by Lewis et al. (2013, 

p.51).   
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D.6.5 Albuterol Use   

The average number of albuterol inhaler actuations (‘puffs’) per day for an asthmatic child, 

age 6-13, is reported by Rabinovith et al. (2006, Table 1) as 2.2 ‘puffs’ per child per day. 

D.6.6 Upper Respiratory Symptoms   

Upper Respiratory Symptoms are defined as one or more of the following: runny or stuffy 

nose; wet cough; burning, aching, or red eyes. Using the incidence rates for upper respiratory 

symptoms among asthmatics, published in Pope et al. (1991, Table 2), we calculated a 

sample size-weighted average incidence rate.   

D.6.7 Asthma Population Estimates   

In studies examining the association between air pollution and the development or 

exacerbation of asthma, oftentimes an estimate of the percent of the population with asthma 

is required. Asthma percentages were obtained from an American Lung Association (2010b) 

report summarizing data from NHIS. Table D-10 presents asthma prevalence rates used to 

define asthmatic populations in the health impact functions. 
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Table D-9 Asthma Prevalence Rates Used to Estimate Asthmatic Populations 

Population Group Asthma Prevalence Source 

All Ages 7.80% 

American Lung Association (2010b, Table 7) 

<5 6.14% 

<18 9.41% 

5-17 10.70% 

18-44 7.19% 

45-64  7.45% 

65+ 7.16% 

African-American, <5 9.98% 
American Lung Association (2010b, Table 9) 

African-American, 5 to 17 17.76% 

African-American, <18 15.53% American Lung Association* 
*Calculated by ALA for U.S. EPA, based on NHIS data (CDC, 2008). 

 

D.7 Other Acute and Chronic Effects  

For many of the minor effect studies, baseline rates from a single study are often the only 

source of information, and we assume that these rates hold for locations in the U.S. The use 

of study- specific estimates are likely to increase the uncertainty around the estimate 

because they are often estimated from a single location using a relatively small sample. 

These health effects include: acute bronchitis, chronic bronchitis, upper respiratory 

symptoms, lower respiratory symptoms. Table D-8 presents a summary of these baseline 

rates. 
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Table D-10 Selected Acute and Chronic Incidence (Cases / Person-Year) & Prevalence 
(Percentage Population) 

Health Effect Age Parameter Rate Source 

Acute Bronchitis 8-12 Incidence 0.043 
American Lung 
Association 
(2002b, Table 11) 

Chronic 
Bronchitis 

27+ Incidence 0.00378 
Abbey et al. 
(1993, Table 3) 

Chronic 
Bronchitis 

18+ 

Prevalence 

4.37% 
American Lung 
Association 
(2010a, Table 4). 
The rate numbers 
may be slightly 
different from 
those in Table 4 
because we 
received more 
current estimates 
form ALA. 

18-44 3.15% 

45-64 5.49% 

65+ 5.63% 

Lower 
Respiratory 
Symptoms (LRS) 

7-14 Incidence 0.483 
Schwartz et al. 
(1994, Table 2) 

Minor Restricted 
Activity Days 
(MRAD) 

18-64 Incidence 7.8 
Ostro and 
Rothschild (1989, 
p. 243) 

Work Loss Day 
(WLD) 

18-64 

Incidence 

2.172 Adams et al. 
(1999, Table) U.S. 
Bureau of the 
Census (1997, 
No.22) 

18-24 1.971 

25-44 2.475 

45-64 1.796 
NOTE: The incidence rate is the number of cases per person per year. Prevalence refers to the fraction of people that have a 
particular illness during a particular time period. 

D.7.1 Acute Bronchitis 

The annual rate of acute bronchitis for children ages 5 to 17 was obtained from the American 

Lung Association (2002b, Table 11). The authors reported an annual incidence rate per person 

of 0.043, derived from the 1996 National Health Interview Survey.   
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D.7.2 Chronic Bronchitis Incidence Rate 

The annual incidence rate for chronic bronchitis14 is estimated from data reported by Abbey 

et al. (1993, Table 3). The rate is calculated by taking the number of new cases (234), dividing 

by the number of individuals in the sample (3,310), dividing by the ten years covered in the 

sample, and then multiplying by one minus the reversal rate (estimated to be 46.6% based on 

Abbey et al. (1995a, Table 1).   

Age-specific incidence rates are not available. Abbey et al. (1995a, Table 1) did report the 

incidences by three age groups (25-54, 55-74, and 75+) for “cough type” and “sputum type” 

bronchitis. However, they did not report an overall incidence rate for bronchitis by age-group. 

Since, the cough and sputum types of bronchitis overlap to an unknown extent, we did not 

attempt to generate age-specific incidence rates for the over-all rate of bronchitis. 

D.7.3 Chronic Bronchitis Prevalence Rate   

We obtained the annual prevalence rate for chronic bronchitis from the American Lung 

Association (2010a, Table 4). Based on an analysis of 2008 National Health Interview Survey 

data, they estimated a rate of 0.0437 for persons 18 and older; they also reported the 

following prevalence rates for people in the age groups 18-44, 45-64, and 65+: 0.0315, 0.0549, 

and 0.0563, respectively. 

D.7.4 Lower Respiratory Symptoms  

Lower respiratory symptoms (LRS) are defined as two or more of the following: cough, chest 

pain, phlegm, wheeze. The proposed yearly incidence rate for 100 people, 43.8, is based on 

 
 

 
14 Please note that this health effect is not regularly considered in U.S. EPA analyses (July 2018). 
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the percentiles in Schwartz et al. (Schwartz et al., 1994, Table 2). The authors did not report 

the mean incidence rate, but rather reported various percentiles from the incidence rate 

distribution.  The percentiles and associated per person per day values are 10th = 0 percent, 

25th = 0 percent, 50th = 0 percent, 75th = 0.29 percent, and 90th = 0.34 percent. The most 

conservative estimate consistent with the data are to assume the incidence per person per 

day is zero up to the 75th percentile, a constant 0.29 percent between the 75th and 90th 

percentiles, and a constant 0.34 percent between the 90th and 100th percentiles. 

Alternatively, assuming a linear slope between the 50th and 75th, 75th and 90th, and 90th to 

100th percentiles, the estimated mean incidence rate per person per day is 0.12 percent. (For 

example, the 62.5th percentile would have an estimated incidence rate per person per day of 

0.145 percent.) We used the latter approach in this analysis.  

D.7.5 Minor Restricted Activity Days (MRAD)   

Ostro and Rothschild (1989, p. 243) provide an estimate of the annual incidence rate of MRADs 

per person of 7.8.   

D.7.6 Work Loss Days   

The yearly work-loss-day incidence rate per 100 people is based on estimates from the 1996 

National Health Interview Survey (Adams et al., 1999, Table 41). They reported a total annual 

work loss days of 352 million for individuals ages 18 to 65. The total population of individuals 

of this age group in 1996 (162 million) was obtained from (U.S. Bureau of the Census, 1997, 

No. 22). The average annual rate of work loss days per individual is 2.17. Using a similar 

approach, we calculated work-loss-day rates for ages 18-24, 25-44, and 45-64, respectively.   
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D.8 Other Health Effect Incidence 

Baseline incidence estimates for health effect occurrences other than a hospitalization or 

emergency department visit are described below, listed in alphabetical order. 

D.8.1 Allergic Rhinitis   

Prevalence rates of hay fever/rhinitis are presented by Parker et al. (2009). Parker et al. 

investigate the associations between long-term ozone exposure and respiratory allergies in 

children ages 3 to 17 years old. The authors use prevalence data from the NHIS household 

interview survey and define allergic rhinitis as children with reported hay fever, respiratory 

allergy, or both within the 12 months prior to the survey. Of the eligible population (72,279), 

19.2% of respondents experience allergic rhinitis symptoms within the year prior to the 

survey, therefore, the national prevalence rate of hay allergic rhinitis is 0.192. 

D.8.2 Lung Cancer 

The baseline incidence rates for non-fatal lung cancer were calculated using the existent 

baseline incidence rate for lung cancer mortality in combination with the five-year lung 

cancer survival rate from NCI (2015). We first used the five-year lung cancer survival rate to 

calculate the total incidence of lung cancer (both fatal and non-fatal) from the baseline 

mortality rate using the following formula: baseline mortality rate / (1 – five-year survival 

rate). We then calculated the incidence of non-fatal lung cancer as the difference between 

total lung cancer incidence and fatal lung cancer incidence (NCI, 2015). Table D-11 presents 

the baseline incidence of lung cancer mortality, the SEER five-year survival rate, the 

estimated total lung cancer incidence, and the estimated non-fatal lung cancer incidence rate 

by age group. 
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Table D-11 Lung Cancer Incidence Rates 

Age Group Annual Lung 
Cancer Mortality 
Incidence [A] 

Five-Year Survival 
Rate [B] 

Total Lung Cancer 
Incidence 
[C] = [A] / (1 - [B]) 

Non-fatal Lung 
Cancer Incidence 
[D] = [C] – [A] 

25-34 0.0000033 34.6% 0.0000050 0.00000175 

35-44 0.0000282 34.6% 0.0000431 0.00001492 

45-54 0.0002378 22.1% 0.0003053 0.00006746 

55-64 0.0007922 20.8% 0.0010003 0.00020805 

65-74 0.00019701 21.0% 0.0002494 0.00005237 

75-84 0.0032952 14.9% 0.0038722 0.00057695 

85+ 0.0031820 14.9% 0.0037391 0.00055713 

 

D.8.3 Out of Hospital Cardiac Arrest 

The baseline incidence of cardiac arrests occurring outside of the hospital (OHCA) is 

estimated using the incidence and survival rates reported by Daya et al. (2015). Daya et al. 

(2015) utilize Resuscitation Outcomes Consortium data to calculate the incidence per 100,000 

of OHCA and the survival rate broken down into four age categories, 0 to 17, 18 to 39, 40 to 64, 

and 65+. We combined the age-specific incidence and survival rates to calculate the baseline 

incidence for non-fatal OHCA (Table D-12). 

Table D-12 Out of Hospital Cardiac Arrest Incidence and Survival Rates 

Age 
Annual incidence per 
100,000 people Survival Rate 

Annual non-fatal 
incidence per 100 
people 

0-17 10.1 8.4% 0.008 

18-39 33.5 9.8% 0.033 

40-64 137.3 14.9% 0.205 

65+ 553.5 8.8% 0.487 
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D.8.4 Stroke 

We developed non-fatal stroke baseline incidence rates using similar data as was utilized to 

develop the non-fatal OHCA incidence rates.  Yao et al. (2019) provide the annual incidence of 

stroke in 2013 for individuals over 65 years old, as well as the survival rate, broken down by 

race, gender, and stroke type (hemorrhagic or ischemic). We combined the incidence and 

survival rates to calculate the rate of non-fatal stroke by gender and race. We then calculated 

the overall annual baseline incidence rate of stroke in all individuals over the age of 65 by 

calculating a weighted averaged from the stratified. This resulted in a rate of 0.004 strokes 

per person per year. Table D-13 presents the stratified incidence and survival rates. 

Table D-13 Stroke Incidence and Survival Rates 

Characteristic 
Annual incidence per 
100,000 people Survival Rate 

Non-fatal Incidence per 100 people 
per year 

Weight 
(Study 
Population) Ischemic Hemorrhagic Ischemic Hemorrhagic Ischemic Hemorrhagic Total 

Black Men 551 93 92% 73% 0.00507 0.00068 0.00575  6,155  

White Men 407 75 88% 60% 0.00358 0.00045 0.00403  54,079  

Black 
Women 

641 94 91% 69% 0.00583 0.00065 0.00648  9,819  

White 
Women 466 77 85% 56% 0.00396 0.00043 0.00439  78,839  

Weighted Average 0.00446  
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Appendix E. Core Particulate Matter Health 

Impact Functions in BenMAP 

In this Appendix, we present the core PM-related health impact functions in BenMAP, i.e., the 

functions that, as of the current release, U.S. EPA routinely uses in its regulatory analyses. 

Each sub-section has a table with a brief description of the health impact function and the 

underlying parameters. Following each table, we present a brief summary of each of the 

studies and any items that are unique to the study.   

Note that Appendix C mathematically derives the standard types of health impact functions 

encountered in the epidemiological literature, such as, log-linear, logistic and linear, so we 

simply note here the type of functional form. Appendix D presents a description of the 

sources for the incidence and prevalence data used in each health impact function. 

E.1 Long-term Mortality   

There are two types of exposure to PM that may result in premature mortality. Short-term 

exposure may result in excess mortality on the same day or within a few days of exposure. 

Long-term exposure over, say, a year or more, may result in annual mortality in excess of 

what it would be if PM levels were generally lower, although the excess mortality that occurs 

will not necessarily be associated with any particular episode of elevated air pollution levels. 

In other words, long-term exposure may capture a facet of the association between PM and 

mortality that is not captured by short-term exposure. Table E-1 lists the long-term mortality 

health impact functions. 
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Table E-1 Core Health Impact Functions for Particulate Matter and Long-Term 
Mortality 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form 

Mortality, 
All Cause Wu et al. 2020 Nationwide 

65-
99  Annual 0.006391 0.000383 

Log-
linear 

Mortality, 
All Cause 

Pope et 
al. 

2019 Nationwide 18-
99 

 Annual 0.011333 0.001602 Log-
linear 

Mortality, 
All Cause 

Di et al. 2017 Nationwide 
65-
99 

O3 Annual 0.007046 0.000095 
Log-
linear 

Mortality, 
All Cause 

Turner et 
al. 2016 Nationwide 

30-
99 O3 Annual 0.005827 0.000963 

Log-
linear 

Mortality, 
All Cause 

Woodruff 
et al. 

2008 Nationwide 0-0  Annual 0.005603 0.004539 Logistic 

 

E.1.1 Wu et al. (2020) 

Wu et al. (2020) evaluated the relationship between long-term PM2.5 exposure and all-cause 

mortality in more than 68.5 million Medicare enrollees (over the age of 64), using Medicare 

claims data from 2000-2016 representing over 573 million person-years of follow-up and over 

27 million deaths. This cohort included over 20% of the U.S. population and was, at the time 

of publishing, the largest air pollution study cohort to date. The authors modeled PM2.5 

exposure at a 1-km2 grid resolution using a hybrid ensemble-based prediction model that 

combined three machine learning models and relied on satellite data, land-use information, 

weather variables, chemical transport model simulation outputs, and monitor data. Wu et al. 

(2020) fit five different statistical models: a Cox proportional hazards model, a Poisson 

regression model, and three causal inference approaches (GPS estimation, GPS matching, 

and GPS weighting). All five statistical approaches provided consistent results; we report the 

results of the Cox proportional hazards model here. The authors adjusted for numerous 

individual-level and community-level confounders, and sensitivity analyses suggest that the 

results are robust to unmeasured confounding bias. 
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All-Cause Mortality 

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated from 

the hazard ratio (1.066) and 95% confidence interval (1.058-1.074) associated with a change in 

annual mean PM2.5 exposure of 10.0 ug/m3 (Wu et al. 2020, Table S3, Main analysis, 2000-2016 

Cohort, Cox PH). 
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E.1.2 Pope et al. (2019) 

Pope et al. (2019) examined the relationship between long-term PM2.5 exposure and all-cause 

mortality in a cohort of 1,599,329 U.S. adults (aged 18-84 years) who were interviewed in the 

National Health Interview Surveys (NHIS) between 1986 and 2014 and linked to the National 

Death Index (NDI) through 2015. The authors also constructed a subcohort of 635,539 adults 

from the full cohort for whom body mass index (BMI) and smoking status data were available. 

They employed a hybrid modeling technique to estimate annual-average PM2.5 

concentrations derived from regulatory monitoring data and constructed in a universal 

kriging framework using geographic variables including land use, population, and satellite 

estimates. Pope et al. (2019) assigned annual-average PM2.5 exposure from 1999-2015 to each 

individual by census tract and utilized complex (accounting for NHIS’s sample design) and 

simple Cox proportional hazards models for the full cohort and the subcohort. We report the 

results of the complex model for the subcohort, which controls for individual-level covariates 

including age, sex, race-ethnicity, inflation-adjusted income, education level, marital status, 

rural versus urban, region, survey year, BMI, and smoking status. 

All-Cause Mortality 

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated from 

the hazard ratio (1.12) and 95% confidence interval (1.08-1.15) associated with a change in 

annual mean PM2.5 exposure of 10.0 ug/m3 (Pope et al. 2019, Table 2, Subcohort). 
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E.1.3 Di et al. (2017) 

Di et al. (2017) evaluated the relationship between long-term PM2.5 exposure and all-cause 

mortality in nearly 61 million U.S. Medicare enrollees (over the age of 64) through 460 million 

person-years of follow-up and roughly 22 million observed deaths. This cohort comprised 

approximately 15% of the total U.S. population, included people living in rural areas, and is 

one of the largest cohort studies published to date. The authors modeled PM2.5 exposure 

across the contiguous U.S. using a hybrid methodology that included land use regression, 

satellite data, and monitor data, and resolved estimations to 1 x 1-kilometer areas. Di et al. 

(2017) used Cox proportional-hazards models with a generalized estimating equation. 

Adjustment for potential confounding by the co-pollutant O3 was performed, which slightly 

attenuated the relationship between PM2.5 and mortality. The authors also performed 

statistical testing of the potential for non-linear effects and concluded that the data 

supported a nearly-linear concentration-response relationship with no signal of a threshold 

down to at least 5 µg/m3.   

All-Cause Mortality  

In a two-pollutant model, the coefficient and standard error for PM2.5 are estimated from the 

hazard ratio (1.073) and 95% confidence interval of (1.071-1.075) associated with a change in 

annual mean PM2.5 exposure of 10.0 µg/m3 (Di et al., 2017, Table 2 Main Analysis, Cox PH with 

GEE).    

  



Appendix E – Core Particulate Matter Health Impact Functions in BenMAP 
 

 
BenMAP User Manual v0.5  April 2024 

E-6 

E.1.4 Turner et al. (2016) 

Turner et al. (2016) examined the relationship between long-term PM2.5 exposure (1982-2004) 

and mortality (all-cause, cause-specific) in American Cancer Society Cancer Prevention Study-

II participants (aged 30-99 years). Estimated PM2.5 concentrations were obtained using 

monthly PM2.5 monitor data (1999-2008) and a national-level hybrid land use regression (LUR) 

and Bayesian maximum entropy (BME) interpolation model. Turner et al. (2016) utilized 

random-effects Cox proportional hazard models adjusted a priori for individual, socio-

demographic, and ecological variables. In addition to adjusting for individual-level and 

ecological covariates, Turner et al. (2016) also controlled for occupational PM2.5 exposure and 

adjusted for the potential co-pollutants O3 and nitrogen dioxide.  

All-Cause Mortality  

In a multi-pollutant model, the coefficient and standard error for PM2.5 are estimated from the 

hazard ratio (1.06) and 95% confidence interval of (1.04–1.08) associated with a change of 

10.0 µg/m3 in the mean PM2.5 exposure level from 1999-2004 (Turner et al., 2016, Table E10 

HBM PM2.5, MP model, controlling for HBM O3 1982-2004).    
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E.1.5 Woodruff et al. (2008) 

Woodruff et al. (2008) examined the relationship between long-term exposure to fine PM2.5 air 

pollution and post-neonatal infant mortality in 3,583,495 births from 96 counties containing 

>249,999 residents across the U.S. between 1999-2002 using data from the National Center for 

Health Statistics (NCHS). They linked average PM2.5 monitoring data over the first two months 

of life with 6,639 post neonatal deaths, using logistic regression that incorporated generalized 

estimating equations (GEE) to estimate the odds ratios for all-cause and cause-specific post-

neonatal mortality by exposure to air pollution. The study population experienced a median 

PM2.5 concentration of 14.8 µg/m3, with 25% of the population experiencing concentrations 

below 12 µg/m3 and above 18.8 µg/m3. The study included an evaluation of the 

appropriateness of a linear form from analysis based on quartiles of exposure and identified 

the linear form as a reasonable assumption.  

All-Cause Mortality  

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated from 

the odds ratio (1.04) and 95% confidence interval of (0.98–1.11) associated with a change of 7 

µg/m3 in the mean PM2.5 exposure level during the first two months of life (Woodruff et al., 

2008, Table 4 PM2.5 single-pollutant model, all causes). 
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E.2 Chronic/Severe Illness  

Table E-2 below summarizes the health impact functions used to estimate the relationship 

between PM2.5 and chronic health effects. We present a brief summary of each of the studies 

below.    

Table E-2 Core Health Impact Functions for Particulate Matter and Chronic Illness 

Effect Author Year Location Age Co-
Poll 

Metric Beta Std Err Form Notes 

Cardiac Arrest Ensor et al. 2013 Houston, TX 18-
99  D24HourMean 0.006376 0.002823 Logistic  

Cardiac Arrest Rosenthal et 
al. 2008 Indianapolis, 

Indiana 
0-
99  D24HourMean 0.00198 0.005018 Logistic  

Cardiac Arrest Silverman et 
al. 2010 New York City 0-

99  D24HourMean 0.003922 0.00222 Logistic  

Lung Cancer Gharibvand et 
al. 2017 

Nationwide 
U.S. and 5 
Canadian 
provinces 

30-
99  Mean 0.037844 0.013121 Log-

linear  

Alzheimer’s 
Disease 

Kioumourtzogl
ou et al 2016 

50 
Northeastern 
U.S. cities 

65-
99  Mean 0.139762 0.017753 Log-

linear  

Parkinson’s 
Disease 

Kioumourtzogl
ou et al 2016 

50 
Northeastern 
U.S. cities 

65-
99  Mean 0.076961 0.018905 Log-

linear  

Stroke Kloog et al. 2012 New England  65-
99  Mean 0.00343 0.001265 Log-

linear  

Acute Myocardial 
Infarction, 
Nonfatal 

Peters et al. 2001 Boston, MA 18-
99  D24HourMean 0.024121 0.009285 Logistic  

Acute Myocardial 
Infarction, 
Nonfatal 

Pope et al.  2006 Greater Salt 
Lake City, UT 

0-
99  D24HourMean 0.0048 0.0019 Logistic 

Index MI and 
unstable 
angina 

Acute Myocardial 
Infarction, 
Nonfatal 

Sullivan et al. 2005 
King County, 
WA 

0-
99  D24HourMean 0.0019 0.0022 Logistic  

Acute Myocardial 
Infarction, 
Nonfatal 

Zanobetti and 
Schwartz 2006 Greater 

Boston, MA 
0-
99  D24HourMean 0.0053 0.0022 Logistic 

Age range 
adjusted 
Admissions 
through ER 
visits only. 

Acute Myocardial 
Infarction, 
Nonfatal 

Zanobetti et al. 2009 26 U.S. Comm 0-
99  D24HourMean 0.0022 0.0006 Log-

linear 

Age range 
adjusted. All 
Seasons. 

Acute Myocardial 
Infarction, 
Nonfatal 

Wei et al.  2019 Nationwide 65-
99  D24HourMean 0.0011 0.0002 Logistic  
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E.2.1 Ensor et al. (2013)   

Ensor et al. (2013) studied the association between short-term ambient air pollution (PM2.5 

and O3) exposure and out-of-hospital cardiac arrest (OHCA). Ensor et al. (2013) gathered 

medical and demographic data for all ages from an Emergency Medical Services database in 

Houston, Texas between 2004 and 2011. Authors assessed the medical data and defined out-

of-hospital cardiac arrest as emergency medical services performing chest compressions. 

Authors collected ambient air pollution and weather data from Texas Commission of 

Environmental Quality monitors and calculated hourly and daily averages for PM2.5 and O3. 

The authors used a time-stratified case crossover analysis and conditional logistic regression. 

Out-of-Hospital Cardiac Arrest 

In a single-pollutant model, the coefficient and standard error are estimated from a reported 

excess risk of OHCA of 3.9 percent (95% CI: 0.5 -7.4) for a 6 µg/m3 increase in the averaged 

daily mean PM2.5 concentration 0- and 1-days prior to onset (Ensor et al. 2013, Table 4). 
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E.2.2 Gharibvand et al. (2017)   

Gharibvand et al. (2017) evaluated whether positive associations exist between PM2.5 

exposure and incidence of lung cancer in non-smokers among the Adventist Health and Smog 

Study-2 (AHSMOG-2), a group of health-conscious individuals of which 81% are never 

smokers. Authors collected ambient air pollution data (PM2.5 and O3) from the U.S. EPA Air 

Quality system over two years (January 2000-December 2001). Three a priori factors were 

added to the models as covariates: time spent outdoors, residence length, and moving 

distance during follow-up. Authors modeled the association between PM2.5 exposure and 

incidence of lung cancer using a Cox proportional hazards regression, with attained age as 

the time variable. The authors conducted both a single and a two-pollutant (PM2.5 and O3) 

analyses. The study concluded that each 10 µg/m3 increase in ambient PM2.5 concentrations 

was positively associated with increased lung cancer risks within the single-pollutant and 

two-pollutant multivariable models with O3. 

Incidence, Lung Cancer 

In a two-pollutant multivariable model with O3 (including a priori covariates), the coefficient 

and standard error were estimated from a hazard ratio of 1.46 (95% CI: 1.13-1.89) for each 10 

µg/m3 increase in mean monthly ambient PM2.5 concentrations (Gharibvand et al. 2016, Table 

3). 
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E.2.3 Kioumourtzoglou et al. (2016)   

Kioumourtzoglou et al. (2016) evaluated the potential impact of long-term PM2.5 exposure on 

first hospital admission for dementia, Alzheimer’s, or Parkinson’s diseases among Medicare 

beneficiaries (>= 65 years old) in 50 cities in the northeastern U.S. (Connecticut, Delaware, 

Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, 

Rhode Island, Vermont, and Washington, D.C.). Authors retrieved medical data from the 

Center for Medicaid and Medicare from the years 1999-2010. The study followed enrollees as a 

cohort, which included annual follow-up records identifying the first hospital admissions for 

dementia (ICD-9 290), Alzheimer’s (ICD-9 331.0), Parkinson’s (ICD-9 332), and other 

cardiovascular comorbidities. With respect to Alzheimer’s disease, the study evaluated 

9,817,806 Medicare enrollees and included 266,725 cause-specific hospital admissions 

indicating disease onset. With respect to Parkinson’s disease, the study evaluated 9,817,806 

Medicare enrollees and included 119,425 cause-specific hospital admissions indicating 

disease onset. Annual average PM2.5 concentrations were estimated for each city using data 

from the U.S. EPA Air Quality System database. Kioumourtzoglou et al. (2016) fit a time-

varying Cox proportional hazards model for each city, using the city-wide annual PM2.5 

concentrations as the time-varying exposure of interest and a linear term for the calendar 

year. This eliminated the impact of PM2.5 variation by city and any PM2.5 trends within cities. 

The model adjusted for cardiovascular comorbidities, and incorporated a counting process 

extension which created an observation for each year of follow-up per person. The results 

were then pooled across individuals and cities.  

Incidence, Alzheimer’s Disease (ICD-9 331.0) 

In a single-pollutant model, the coefficient and standard error were estimated from a hazard 

ratio of 1.15 (95% CI: 1.11-1.19) for a 1 µg/m3 increase in the average annual PM2.5 

concentrations (Kioumourtzoglou et al. 2016, Table 1). 
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Incidence, Parkinson’s Disease (ICD-9 332) 

In a single-pollutant model, the coefficient and standard error were estimated from a hazard 

ratio of 1.08 (95% CI: 1.04-1.12) for a 1 µg/m3 increase in the average annual PM2.5 

concentrations (Kioumourtzoglou et al. 2016, Table 1). 

  



Appendix E – Core Particulate Matter Health Impact Functions in BenMAP 
 

 
BenMAP User Manual v0.5  April 2024 

E-13 

E.2.4 Kloog et al. (2012)   

Kloog et al. (2012) analyzed the effects of long- and short-term PM2.5 exposure on hospital 

admissions due to strokes with a new PM2.5 exposure model in New England (Connecticut, 

Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont) from 2000 to 2006. We 

use this health effect as a surrogate for PM2.5-attributable stroke incidence. Authors collected 

medical data from 67,678 adults aged 65 to 99 in the U.S. Medicare program database from 

2000 to 2006. They defined all respiratory, cardiovascular disease, stroke, and diabetes based 

on emergency department visits and primary discharge diagnosis records. Authors used a 

hybrid exposure technique comprised of daily PM2.5 concentration data from aerosol optical 

depth (AOD) measurements and ambient air monitors from the U.S. EPA and Interagency 

Monitoring of Protected Visual Improvements (IMPROVE). Authors also obtained land use 

regressions, meteorological data (National Climatic Data Center), and socioeconomic data 

(U.S. Census Bureau) matched to zip codes in order to perform land use Poisson regressions. 

Incidence, Stroke (ICD Codes 430-436) 

In a single-pollutant model for patients over the age of 65, the coefficient and standard error 

were estimated from the percent change (3.49%) and 95% confidence interval (0.09-5.18%) 

for a 10 µg/m3 increase in the 7-year mean PM2.5 concentrations (Kloog et al., 2012, Table 3). 
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E.2.5 Peters et al. (2001)   

Peters et al. (2001) studied the relationship between increased particulate air pollution and 

onset of heart attacks in the Boston area from 1995 to 1996. The authors used air quality data 

for PM10, PM10-2.5, PM2.5, ”black carbon”, O3, CO, NO2, and SO2 in a case-crossover analysis. For 

each subject, the case period was matched to three control periods, each 24 hours apart. In 

univariate analyses, the authors observed a positive association between heart attack 

occurrence and PM2.5 levels hours before and days before onset. The authors estimated 

multivariate conditional logistic models including two-hour and twenty-four hour pollutant 

concentrations for each pollutant. They found significant and independent associations 

between heart attack occurrence and both two-hour and twenty-four hour PM2.5 

concentrations before onset. Significant associations were observed for PM10 as well. None of 

the other particle measures or gaseous pollutants was significantly associated with acute 

myocardial infarction for the two hour or twenty-four hour period before onset.   

The patient population for this study was selected from health centers across the United 

States. The mean age of participants was 62 years old, with 21% of the study population 

under the age of 50. In order to capture the full magnitude of heart attack occurrence 

potentially associated with air pollution and because age was not listed as an inclusion 

criteria for sample selection, we apply an age range of 18 and over in the C-R function. 

According to the National Hospital Discharge Survey, there were no hospitalizations for heart 

attacks among children <15 years of age in 1999 and only 5.5% of all hospitalizations 

occurred in 15-44 year olds (Popovic, 2001, Table 10).   

Acute Myocardial Infarction, Nonfatal   

The coefficient and standard error are calculated from an odds ratio of 1.62 (95% CI 1.13-2.34) 

for a 20 µg/m3 increase in twenty-four hour average PM2.5 (Peters et al., 2001, Table 4, p. 2813).   
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Incidence Rate: We use the county-specific daily AMI hospitalization rate (ICD-9 code 410) for 

the population of individuals aged 18 years and older as the estimate for the incidence rate of 

nonfatal heart attack, assuming all heart attacks that are not instantly fatal will result in a 

hospitalization. We did not adjust for fatal AMIs in the incidence rate estimation, due to the 

way that the epidemiological studies are designed. Those studies consider total admissions 

for AMIs, which includes individuals living at the time the studies were conducted. Therefore, 

we use the definition of AMI that matches the definition in the epidemiological studies.   

Population: Population of ages 18 and older   

Adjustment: As some fraction of the admitted individuals die in the hospital, we apply a 

survival rate of 93% in calculating the avoided cases of AMI in order to avoid double counting 

(once in the calculation of AMI cases and once in the calculation of PM-related mortality).  
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E.2.6 Pope et al. (2006)   

Pope et al. (2006) evaluated the association between short-term exposure to PM2.5 and acute 

ischemic heart disease events, including acute nonfatal myocardial infarction, all acute 

coronary events, and subsequent myocardial infarctions in individuals living in greater Salt 

Lake City, Utah. In a case-crossover study, these ischemic events were assessed in relation to 

a 10 µg/m3 increase in PM2.5. The researchers determined that a 10 µg/m3 increase in PM2.5 

resulted in a 4.5% increase (95% CI: 1.1-8.0) in unstable angina and myocardial infarction.   

Acute Myocardial Infarction, Nonfatal   

In a single-pollutant model the coefficient and standard error were estimated from the 

percent increase (4.81%) and 95% confidence interval (95% CI: 0.98-8.79) for a 10 µg/m3 

increase in daily 24-hour mean PM2.5 (Pope et al., 2006, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate discussion 

under Peters et al. (2001) in Section E.2.5.   

Population: All ages   

Adjustment: See the adjustment description in Section E.2.5.  
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E.2.7 Rosenthal et al. (2008)   

Rosenthal et al. (2008) examined the effects of short-term PM2.5 exposure on out-of-hospital 

cardiac arrest incidence and whether these effects were connected to demographic data or 

presence of heart rhythm. Additionally, Rosenthal et al. (2008) compared exposure time and 

measurement method on the effects of short-term PM2.5 exposure and out-of-hospital cardiac 

arrest incidence. Authors obtained medical data from the Wishard Ambulance Service, a local 

emergency medical service in Indianapolis, Indiana, from July 2, 2002 to July 7, 2006. The 

study defined out-of-hospital cardiac arrest using the same criteria as Ensor et al. (2013) and 

Silverman et al. (2010). Authors collected daily and hourly PM2.5 concentrations from two City 

of Indianapolis monitoring sites and using two separate methods: the Federal Reference 

Method (FRM) for 24-hour filter samples, and a Federal Equivalence Method (FEM). The 

authors used a case crossover analysis with conditional logistic regressions in order to study 

the effects of short-term PM2.5 exposure on out-of-hospital cardiac arrest incidence. Rosenthal 

et al. (2008) found a positive but statistically insignificant association between non-dead on 

arrival (DOA) out-of-hospital cardiac arrest cases and ambient PM2.5 concentrations. Although 

they also noted a statistically significant positive association when restricted to witnessed, 

non-DOA out-of-hospital cardiac arrest cases, that subgroup is less applicable to the available 

baseline incidence rate of non-DOA out-of-hospital cardiac arrest cases.  

Out-of-Hospital Cardiac Arrest 

In a single-pollutant model of all non-DOA OHCA cases, the coefficient and standard error 

were estimated from a hazard ratio of 1.02 (95% CI: 0.92-1.12) for each 10 µg/m3 increase in 

daily mean PM2.5 concentrations, lagged by 0-1 days (Rosenthal et al. 2008, Table 5). 
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E.2.8 Silverman et al. (2010)   

Silverman et al. (2010) investigated the link between short-term ambient air pollution 

exposure (PM2.5, NO2, SO2, O3, and CO) and out-of-hospital cardiac arrest in New York City 

between 2002 and 2006. Authors obtained medical data from the Emergency Medical Services 

of the New York City Fire Department for 8,216 subjects aged 0 to 99, average age 65.6 with 

slightly more men than women. Authors collected air pollution and weather data from the 

U.S. EPA’s Air Quality System monitors within a 20-mile radius of New York City and averaged 

over 24-hour periods. Authors conducted time series and case crossover analyses with 0- and 

1-day lagged air pollution levels and by season.  

Out-of-Hospital Cardiac Arrest 

In a single-pollutant case-crossover model, the coefficient and standard error were estimated 

from a relative risk of 1.04 (95% CI: 0.99-1.08) for a 10 µg/m3 increase in the averaged daily 

mean PM2.5 concentration 0- and 1-day prior to onset (Silverman et al. 2010, Table 4). 
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E.2.9 Sullivan et al. (2005)   

Sullivan et al. (2005) studied the relationship between onset time of acute myocardial 

infarction and the preceding hourly PM2.5 concentrations in 5,793 confirmed cased of 

myocardial infarction through King County, Washington. In this case-crossover study from 

1988-1994, air pollution exposure levels averaged 1 hour, 2 hours, 4 hours, and 24 hours 

before onset of myocardial infarction were compared to a set of time-stratified referent 

exposures from the same day of the week in the month of the case event. The authors 

estimated that an associated risk of 1.01 (95% CI: 0.98-1.05) for myocardial infarction onset 

could be attributed to a 10 µg/m3 increase in PM 2.5 the hour before the MI onset. No 

increased risk was found in all cases with preexisting cardiac diseases with an odds ratio of 

1.05 (95% CI: 0.95-1.16). Furthermore, stratification for hypertension, diabetes, and smoking 

status did not modify the association between PM2.5 and onset of myocardial infarction.   

Acute Myocardial Infarction, Nonfatal   

In a single-pollutant model the coefficient and standard error were estimated from the odds 

ratio (1.02) and 95% confidence interval (95% CI: 0.98-1.07) for a 10 µg/m3 increase in daily 24- 

hour mean PM2.5 lagged 1 day (Sullivan et al., 2005, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate discussion 

under Peters et al. (2001) in Section E.2.5.  

Population: All ages   

Adjustment: See the adjustment description in Section E.2.5.  
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E.2.10 Zanobetti and Schwartz (2006)   

Zanobetti and Schwartz (2006) analyzed hospital admissions through emergency department 

for myocardial infarction (ICD-9 code 410) and pneumonia (ICD-9 codes 480-487) for 

associations with fine particulate air pollution, ozone, black carbon, nitrogen dioxide, PM not 

from traffic, and CO in the greater Boston area from 1995-1999. The authors used a case- 

crossover analysis with control days matched on temperature. Significant associations were 

detected for NO2 with a 12.7% increase 95% CI: 5.8-18.0), PM2.5 with an 8.6% increase (95% CI: 

1.2-15.4), and black carbon with an 8.3% increase (95% CI: 0.2-15.8) in emergency myocardial 

infarction hospitalizations. Similarly, significant associations were identified for PM2.5 with a 

6.5% increase (95% CI: 1.1-11.4) and CO with a 5.5% increase (95% CI: 1.1-9.5) in pneumonia 

hospitalizations.   

Acute Myocardial Infarction, Nonfatal   

The study looked at hospital admissions of AMI through the ER. Under the assumption that all 

heart attacks will end in hospitalization, we consider the health effect as heart attack events 

to be consistent with other studies. In a single-pollutant model, the coefficient and standard 

error are estimated from the percent change in risk (8.65%) and 95% confidence interval (95% 

CI: 1.22-15.38%) for a 16.32 µg/m3 increase in daily 24-hour mean PM2.5 for an average of the 0- 

and 1-day lag (Zanobetti A. and Schwartz, 2006, Table 4).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate discussion 

under Peters et al. (2001) in Section E.2.5.   

Population: All ages. Note that although Zanobetti and Schwartz (2006) reports results for 

the 65-99 year old age range, for comparability to other studies, we apply the results to all 

ages. Since the vast majority of AMIs occur among population 65-99, over-counting may not 

be an issue when applying the risk coefficient to all ages.   

Adjustment: See the adjustment description in Section E.2.5.  
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E.2.11 Zanobetti et al. (2009)   

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and emergency 

hospital admissions for cardiovascular causes, myocardial infarction, congestive heart 

failure, respiratory disease, and diabetes among 26 U.S. communities from 2000-2003. The 

authors used meta-regression to examine how this association was modified by season- and 

community-specific PM2.5 composition while controlling for seasonal temperature as a 

substitute for ventilation. Overall, the authors found that PM2.5 mass higher in Ni, As, and Cr as 

well as Br and organic carbon significantly increased its effects on hospital admissions. For a 

10 µg/m3 increase in 2-day averaged PM2.5, a 1.89% (95% CI: 1.34-2.45) increase in 

cardiovascular disease admissions, a 2.25% (95% CI: 1.10-3.42) increase in myocardial 

infarction admissions, a 1.85% (95% CI: 1.19-2.51) increase in congestive heart failure 

admissions, a 2.74% (95% CI: 1.30-4.20) increase in diabetes admissions, and a 2.07% (95% CI: 

1.20-2.95) increase in respiratory admissions were observed. The relationship between PM2.5 

and cardiovascular admissions was significantly modified when the mass of PM2.5 was high in 

Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and sodium ions 

modified the myocardial infarction relationship and mass high in As, orgarnic carbon, and 

sulfate ions modified the diabetes admission rates.  

Acute Myocardial Infarction, Nonfatal   

The study looked at hospital admissions of AMI through ER. Under the assumption that all 

heart attacks will end in hospitalization, we consider the health effect as heart attack events 

to be consistent with other studies. In a single-pollutant model the coefficient and standard 

error are estimated from the percent change in risk (2.25%) and 95% confidence interval (95% 

CI: 1.10-3.42) for a 10 µg/m3 increase in 2-day averaged PM2.5 (Zanobetti et al., 2009, Table 3).   

Incidence Rate: AMI hospital admission rate for all ages. See the incidence rate discussion 

under Peters et al. (2001) in Section E.2.5.   
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Population: All ages. Note that although Zanobetti et al. (2009) reports results for the 65-99 

year old age range, for comparability to other studies, we apply the results to all ages. Since 

the vast majority of AMIs occurs among population 65-99, over-counting may not be an issue 

when applying the risk coefficient to all ages.   

Adjustment: See the adjustment description in Section E.2.5.   
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E.2.12 Wei et al. (2019)   

Wei et al. (2019) evaluated the relationship between short-term PM2.5 exposure and hospital 

admissions for 214 mutually exclusive disease groups, including acute myocardial infarction, 

in a time-stratified, case-crossover analysis of over 95 million Medicare inpatient hospital 

claims from 2000-2012. The authors estimated daily PM2.5 levels at a 1-km2 grid cell level 

using a satellite based, neural network model that was calibrated using monitor data and 

assigned 0-1 day lagged PM2.5 exposure to each participant by zip code of residence. For each 

disease group, Wei et al. (2019) created a case crossover dataset that controlled for individual 

level and zip code level variables, day of the week, seasonality, and long-term time trends. 

They used conditional logistic regression models to estimate associations between PM2.5 

exposure and risk of hospital admission and found positive associations for numerous rarely 

studied and numerous well-studied disease groups.  

Acute Myocardial Infarction, Nonfatal 

In a single-pollutant model, the coefficient and standard error are estimated from a reported 

relative increase in risk (0.11%) and 95% confidence interval (0.07%-0.16%) associated with a 

1 ug/m3 increase in 0-1 day lagged PM2.5 exposure (Wei et al. 2019, Figure 3, CCS 100 Acute 

Myocardial Infarction).  
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E.3 Hospitalizations   

Table E-3 summarizes the health impacts functions used to estimate the relationship 

between PM2.5 and hospital admissions. Below, we present a brief summary of each of the 

studies and any items that are unique to the study.  

Table E-3 Core Health Impact Functions for Particulate Matter and Hospital 
Admissions 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Cardiovascular 
Bell et 
al. 2015 

213 U.S. 
Counties 

65-
99  D24HourMean 0.000648 0.000089 

Log-
linear  

Respiratory Bell et 
al. 

2015 213 U.S. 
Counties 

65-
99 

 D24HourMean 0.00025 0.000120 Log-
linear 

 

Respiratory Ostro et 
al. 

2009 
6 
California 
counties 

0-
18 

 D24HourMean 0.002752 0.000772 Log-
linear 
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E.3.1 Bell et al. (2015)   

Bell et al. (2015) investigated the effects of short-term fine particulate matter (PM2.5) exposure 

on respiratory health (ICD-9 464-466, 480-487, 490-492, 493) and cardiovascular health (ICD-9 

410, omitting 410.x2; 410-414; 426-427; 428; 429; 430-438; and 440-448) in older adults (>64 

years). Authors acquired data for 213 U.S. counties (1999-2010) from the Medicare Claims 

Inpatient Files for U.S. residents >65 years of age. Authors chose variables including sex, age, 

county of residence, and cause of hospital admission, as determined by ICD-9 codes. Authors 

collected PM2.5 exposure data from county population-based ambient monitors from the U.S. 

EPA Air Quality System and averaged for county and day. Data were present for 56.5% of 

study days due to the sampling schedule of the monitors. Bell et al. (2015) utilized Bayesian 

hierarchal modeling to examine the links between PM2.5 and hospital admissions, running 

separate models to generate risk models for time lags (0-2 days) and season for any 

estimated variation in health effects.  

Hospital Admissions, Cardio-, Cerebro- and Peripheral Vascular Disease (ICD Codes 410, 

omitting 410.x2; 410-414; 426-427; 428; 429; 430-438; and 440-448) 

In a single-pollutant model, the coefficient and standard error are estimated from a percent 

increase in risk of 0.65% (95% CI: 0.48-0.83%) for an increase of 10 µg/m3 in same-day daily 

mean PM2.5 concentrations (Bell et al. 2015, Table 1). 

Hospital Admissions, Respiratory-2 (ICD Codes 490-492, 464-466, 480-487, 493) 

In a single-pollutant model, the coefficient and standard error are estimated from a percent 

increase in risk of 0.25% (95% CI: 0.01-0.48%) for an increase of 10 µg/m3 in same-day daily 

mean PM2.5 concentrations (Bell et al. 2015, Table 1). 

  



Appendix E – Core Particulate Matter Health Impact Functions in BenMAP 
 

 
BenMAP User Manual v0.5  April 2024 

E-26 

E.3.2 Ostro et al. (2009)   

Ostro et al. (2009) estimated the association between ambient PM2.5, EC, organic carbon (OC), 

NO3, and SO4 on hospital admissions for respiratory diseases in children ages 5 to 19. The 

study used the California Office of Statewide Health Planning and Development, Healthcare 

Quality and Analysis Division hospitalization data from six California counties for the 2000 to 

2003 study period. Ostro et al. (2009) classified hospital admissions into: all respiratory 

disease (ICD-9 codes 460-519), asthma (ICD-9 code 493), acute bronchitis (ICD-9 code 466), 

and pneumonia (ICD-9 codes 480-486). They aggregated the hospital admission data to the 

county level to create a daily time series of admissions for each county. Authors took air 

quality measurements from the California Air Resources Board, which captured speciated 24-

hour average pollutant measurements using a filter-based Met One Speciation Air Sampling 

System. Meteorological measurements for average daily temperature and relative humidity 

came from the California Air Resources Board or the California Irrigation Management 

Information System. Authors analyzed data using a Poisson regression with time, day of the 

week, temperature, relative humidity, and pollutant as explanatory variables. Ostro et al. 

(2009) controlled for seasonality and time dependent effects by including a natural spline 

smoother for the daily time trend and meteorology.  

Hospital Admissions, All Respiratory (ICD Codes 460-519) 

In a single-pollutant model, the coefficient and standard error are estimated from an excess 

risk of 4.1% (95% CI: 1.8-6.4%) for a 14.6 µg/m3 increase in the daily mean PM2.5 

concentrations, lagged by 3 days (Ostro et al. 2009, Table 2, pg. 477). 
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E.4 Emergency Room Visits  

Table E-4 summarizes the health impacts functions used to estimate the relationship 

between PM2.5 and emergency room visits. Below, we present a brief summary of each of the 

studies and any items that are unique to the study.  

Table E-4 Core Health Impact Functions for Particulate Matter and Emergency Room 
Visits 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Cardiovascular 
Ostro 
et al. 2016 

8 
California 
cities 

0-99  
D24Hour
Mean 

0.0006
12 

0.0004
22 Logistic  

Respiratory 
Krall 
et al. 2016 

Atlanta, 
GA 0-99  

D24Hour
Mean 

0.0005
45 

0.0002
67 

Log-
linear  

Respiratory 
Krall 
et al. 2016 

Birmingh
am, AL 0-99  

D24Hour
Mean 

0.0009
68 

0.0003
52 

Log-
linear  

Respiratory Krall 
et al. 

2016 St. Louis, 
MO 

0-99  D24Hour
Mean 

0.0008
32 

0.0003
29 

Log-
linear 

 

Respiratory 
Krall 
et al. 2016 Dallas, TX 0-99  

D24Hour
Mean 

0.0013
53 

0.0005
88 

Log-
linear  
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E.4.1 Ostro et al. (2016)   

Ostro et al. (2016) investigated the association between short-term, source-specific (vehicular 

emissions, biomass burning, soil, and secondary NO¬
3 and SO4 sources) PM2.5 concentrations 

and emergency department visits for respiratory and cardiovascular diseases in eight cities in 

California from 2005 to 2008. Authors obtained medical and demographic data from the 

Office of Statewide Health Planning and Development in California, and diagnosis was 

defined with ICD-9 codes: all cardiovascular (390-459), ischemic heart disease (410–414), AMI 

(410), cardiac dysrhythmia (427), and heart failure (428). Ostro et al. (2016) conducted a case 

cross-over analysis, stratified by year and month, controlling for weather and day of the week 

covariates. Authors used a county-level logistic regression and random-effects meta-analysis 

to examine the association between source-specific PM2.5 and emergency department visits 

for respiratory and cardiovascular diseases. Results indicate a positive association between 

vehicle PM2.5 emissions and emergency department visits for all cardiovascular diseases.  

ER Visits, All Cardiac Outcomes (ICD Codes 390-459) 

In a single-pollutant model, the coefficient and standard error were estimated from the 

excess risk of 0.7% (95% CI: -0.2-1.7%) for a 11.4 µg/m3 (interquartile range) increase in daily 

mean PM2.5 concentration, lagged by 2 days (Ostro et al. 2016, Table 4). 
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E.4.2 Krall et al. (2016)   

Krall et al. (2016) investigated the associations between short-term, source-specific (traffic 

and coal combustion) ambient PM2.5 exposure and emergency department visits for 

respiratory diseases in U.S. cities (Atlanta, GA, Birmingham, AL, St. Louis, MO, and Dallas, TX). 

Authors obtained medical data from hospital electronic billings for emergency department 

visits due to respiratory disease, identified using ICD-9 codes (460-465, 466, 477, 480-486, 491, 

492, 493, 496, 786.07). Authors collected PM2.5 concentrations from one ambient air monitor in 

each of the four cities and gathered meteorological data from the National Climactic Data 

Center. Krall et al. (2016) estimated source-specific PM2.5 using apportionment models, which 

separate PM2.5 sources based on chemical composition. This model also included data on 

gaseous pollutant concentrations from the Community Multiscale Air Quality (CMAQ) with 

Tracers model. Krall et al. (2016) used Poisson time series regression models to analyze 

associations between short-term PM2.5 exposure and emergency department visits for 

respiratory diseases. They then compared source-specific PM2.5 exposures across cities to 

estimate associations with the emergency department visit data. To limit confounders, the 

authors adjusted models for indicator variables, meteorological variables, and long-term 

trends in emergency department visits.  

ER Visits, Respiratory (ICD Codes 480-486, 491, 492, 496, 460-465, 466, 477, 493, 786.07) 

In a single-pollutant model, the coefficient and standard error were estimated from a relative 

risk of 1.005 (95% CI: 1.000-1.010) for Atlanta, GA; 1.009 (95% CI: 1.003-1.015) for Birmingham, 

AL; 1.008 (95% CI: 1.002-1.014) for St. Louis, MO; and 1.012 (95% CI: 1.002-1.023) for Dallas, TX. 

All relative risks were calculated for a 9.16 µg/m3 increase in daily mean PM2.5 concentrations, 

lagged by 0 days (Krall et al. 2016, Figure 1).  
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E.5 Minor Effects   

Table E-5 summarizes the health impacts functions used to estimate the relationship 

between PM2.5 and minor effects. Below, we present a brief summary of each of the studies 

and any items that are unique to the study.   

Table E-5 Core Health Impact Functions for Particulate Matter and Minor Effects 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form 

Work Loss 
Days 

Ostro 1987 Nationwide 18-64  D24Hour
Mean 

0.004600 0.000360 Log-
linear 

Minor 
Restricted 
Activity 
Days 

Ostro and 
Rothschild 

1989 Nationwide 18-64 Ozone D24Hour
Mean 

0.007410 0.000700 Log-
linear 

Hay 
Fever/ 
Rhinitis 

Parker et 
al. 

2009 Nationwide 3-17 Summer 
O3, PM2.5-10, 
NO2, SO2 

Annual 0.025464 0.009618 Logistic 
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E.5.1 Ostro (1987)   

Ostro (1987) estimated the impact of PM2.5 on the incidence of work-loss days (WLDs), 

restricted activity days (RADs), and respiratory-related RADs (RRADs) in a national sample of 

the adult working population, ages 18 to 65, living in metropolitan areas. The study 

population is based on the Health Interview Survey (HIS), conducted by the National Center 

for Health Statistics. The annual national survey results used in this analysis were conducted 

in 1976-1981. Ostro reported that two-week average PM2.5 levels were significantly linked to 

work-loss days, RADs, and RRADs, however there was some year-to-year variability in the 

results. Separate coefficients were developed for each year in the analysis (1976-1981); these 

coefficients were pooled. The coefficient used in the concentration-response function 

presented here is a weighted average of the coefficients in Ostro (1987, Table III) using the 

inverse of the variance as the weight.   

Work Loss Days   

The coefficient used in the C-R function is a weighted average of the coefficients in Ostro 

(1987, Table III) using the inverse of the variance as the weight:  

Equation E-1 
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The standard error of the coefficient is calculated as follows, assuming that the estimated 

year-specific coefficients are independent:  

Equation E-2 
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This eventually reduces down to:  

Equation E-3 

00036.0112 ==⇒=
γ

σ
γ

σ ββ

 

Incidence Rate: daily work-loss-day incidence rate per person ages 18 to 64 = 0.00595 (U.S. 

Bureau of the Census, 1997, No. 22; Adams et al., 1999, Table 41)   

Population: adult population ages 18 to 64  
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E.5.2 Ostro and Rothschild (1989)  

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence of 

minor restricted activity days (MRADs) and respiratory-related restricted activity days (RRADs) 

in a national sample of the adult working population, ages 18 to 65, living in metropolitan 

areas. The study population is based on the Health Interview Survey (HIS), conducted by the 

National Center for Health Statistics. In publications from this ongoing survey, non-elderly 

adult populations are generally reported as ages 18-64. From the study, it is not clear if the 

age range stops at 65 or includes 65 year olds. We apply the C-R function to individuals ages 

18-64 for consistency with other studies estimating impacts to non-elderly adult populations. 

The annual national survey results used in this analysis were conducted in the period 1976-

1981. Controlling for PM2.5, two-week average ozone has highly variable association with 

RRADs and MRADs.  Controlling for ozone, two-week average PM2.5 was significantly linked to 

both health effects in most years.   

Minor Restricted Activity Days   

Using the results of the two-pollutant model, we developed separate coefficients for each 

year in the analysis, which were then combined for use in this analysis. The coefficient is a 

weighted average of the coefficients in Ostro and Rothschild (1989, Table 4) using the inverse 

of the variance as the weight:  

Equation E-4 
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The standard error of the coefficient is calculated as follows, assuming that the estimated 

year-specific coefficients are independent:  

Equation E-5 
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This reduces down to:  

Equation E-6 

.00036.0112 ==⇒=
γ

σ
γ

σ ββ

 

Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 

(Ostro and Rothschild, 1989, p. 243)   

Population: adult population ages 18 to 64   
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E.5.3 Parker et al. (2009)   

Parker et al. (2009) investigated the associations between long-term PM2.5 exposure and 

respiratory allergies in an unrestricted population of children (aged 3-17 years) sampled from 

the United States National Health Interview Survey. Authors obtained symptom data from 

participant parents, who reported respiratory allergies on annual surveys. Parker et al. (2009) 

placed all study participants reporting symptoms of respiratory allergies or hay fever into a 

combined rhinitis group. Parker et al. (2009) then linked annual averages of SO2, NO2, PM2.5, 

and PM2.5-10 and warm season (May to September) O3 averages to participant’s addresses 

through ambient air pollution and meteorological data (O3, SO2, NO2, PM2.5, and PM10-2.5) 

collected from U.S. EPA Air Quality System monitors. The authors adjusted their logistic 

regression models for survey year, poverty-level, race/ethnicity, age, family structure, 

insurance coverage, usual source of care, education of adult, urban-rural status, region, and 

median county-level income.  

Incidence, Hay Fever/Rhinitis  

In a multi-pollutant model, the coefficient and standard error were estimated from an odds 

ratio of 1.29 (95% CI: 1.07-1.56) for a 10 µg/m3 increase in PM2.5 concentrations (Parker et al. 

2009, Table 4).  
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E.6 Asthma-Related Effects   

Table E-6 summarizes the health impacts functions used to estimate the relationship 

between PM2.5 and asthma exacerbation. Below, we present a brief summary of each of the 

studies and any items that are unique to the study. 

Table E-6 Core Health Impact Functions for Particulate Matter and Asthma-Related 
Effects 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Asthma 
Symptoms, 
Albuterol 
use 

Rabinovitch 
et al. 

2006 Denver, 
CO 

6-
17 

 D24HourMean 0.001996 0.001477 Log-
linear 

Albuterol 
use 

Asthma 
Onset 

Tétreault et 
al. 2016 

Québec, 
Canada 

0-
17  Annual 0.043672 0.000885 

Log-
linear 

Separate 
HIFs for 
ages 0-4; 
5-17 
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E.6.1 Rabinovitch et al. (2006)   

Rabinovitch et al. (2006) analyzed the relationship between short-term PM2.5 exposure and 

asthma exacerbation in children. The study followed children, ages 6 to 13 attending the 

Kunsberg School at the National Jewish Medical Research Center with diagnosed asthma for 

two consecutive winters from 2001-2003. Authors gave an electronic bronchodilator 

(albuterol) to the children to capture the frequency of use within a 24-hour period. The 

children also responded to three questions to determine if they may have an upper 

respiratory infection (URI), and urine samples were taken to measure urinary leukotriene E4 

levels on select days. The authors collected hourly ambient PM2.5 levels from the Colorado 

Department of Health Air Pollution Control Division’s Tapered Element Oscillating 

Microbalance (TEOM) monitor, located 2.7 miles west of the school. Additionally, a Federal 

Reference Monitor (FRM) located next to the TEOM measured 24-hour PM2.5 levels. The 

authors obtained meteorological data from the Colorado Department of Health Air Pollution 

Control Division and the National Climatic Data Center. A Poisson regression modeled 

albuterol use as a function of the morning (12:00am to 11:00 am) maximum hourly PM2.5 level 

or the morning mean hourly PM2.5 level. The model used both the TEOM and FRM data, 

individually, incorporated four lag periods (0 to 2 days and 0- to 2-day average), and included 

several covariates: temperature, pressure, humidity, time trend, Friday indicator, and URI 

indicator. Rabinovitch et al. (2006) found that, although the PM2.5 pollution levels were well 

below the National Ambient Air Quality Standards, there is a consistent association between 

peak ambient PM2.5 levels and increased albuterol use in asthmatic children.  

Asthma Symptoms, Albuterol use 

In a single-pollutant model, the coefficient and standard error were estimated from a 

percentage of use increase of 1.2% (95% CI: -0.6-2.9%) for a 6 µg/m3 increase in averaged 

daily mean PM2.5 concentration lagged by 0-, 1-, and 2-days (Rabinovitch et al. 2006, Table 4, 

pg. 1099).  
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E.6.2 Tétreault et al. (2016)   

Tétreault et al. (2016) investigated the relationship between childhood asthma onset and 

long-term pollution exposure (PM2.5, NO2, O3) in Quebec, Canada. The authors obtained data 

from four medical-administrative databases collectively known as Quebec Integrated Chronic 

Disease Surveillance System (QICDSS) between April 1, 1996 and March 31, 2011. The study 

defined the onset of asthma as a hospital discharged diagnosis of asthma or two reports of 

asthma from two separate physicians within a two-year period. The authors used Cox 

proportional hazard models to estimate the association between asthma onset and pollution 

exposure, controlling for demographics and socioeconomic status. Time-varying exposure 

models assessed time-varying exposures to the three pollutants in question. Tétreault et al. 

(2016) showed that childhood asthma onset may be associated with exposure to PM2.5, NO2, 

and O3.  

As the physiology and etiology of lung development in children is similar in children 6-17, we 

apply the 4-12 year age-striated effect estimate from Tétreault et al. (2016) to children ages 4-

17 (Baena-Cagnani et al., 2007, Guerra et al., 2004, Ochs et al., 2004, Sparrow et al., 1991, 

Trivedi and Denton, 2019).   

Incidence, Asthma 

In a single-pollutant time-varying model, the coefficient and standard error were estimated 

from a hazard ratio of 1.33 (95% CI: 1.31-1.34) for a 6.53 µg/m3 (interquartile range) increase in 

annual PM2.5 concentration at the residential address (Tétreault et al. 2016, Table 5). 
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E.7 Sensitivity Analysis – General   

Table E-7 summarizes the PM2.5 health impacts functions considered by U.S. EPA to be 

sensitivity analyses. Below, we present a brief summary of each of the studies and any items 

that are unique to the study. 
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Table E-7 Core Health Impact Functions for Particulate Matter Sensitivity Analyses 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Mortality, All 
Cause Di et al. 2017 Nationwide 65-99  Annual 0.008066 0.000118 Log-

linear 
Single-pollutant 
model 

Mortality, All 
Cause Di et al. 2017 Nationwide 65-99 O3 Annual 0.005921 0.000096 

Log-
linear 

Nearest monitor 
analysis 

Mortality, All 
Cause Di et al. 2017 Nationwide 65-99 O3 Annual 0.007789 0.000118 Log-

linear 
Cox model with 
mixed effects 

Hospital 
Admissions, 
Respiratory 

Jones et 
al. 2015 New York 

State 0-99  D24Hour
Mean 0.000800 0.000170 Logistic HA, Respiratory-

1 

Incidence, 
Asthma 

McConnell 
et al. 2010 

13 Southern 
California 
communities 

4-17  Annual 0.029127 0.017732 
Log-
linear  

Incidence, 
Asthma 

Nishimura 
et al. 2013 5 Urban 

regions  7-21  Annual 0.029559 0.069101 Logistic Black, Hispanic 

Mortality, All 
Cause 

Pope et 
al. 2015 Nationwide 30-99  Annual 0.006766 0.000712 Log-

linear LURBME model 

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et 
al. 2014 Massachusetts 0-99 O3 

D24Hour
Mean 0.000499 0.000355 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et 
al. 2014 New Jersey 0-99 O3 D24Hour

Mean 0.001094 0.000227 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et 
al. 2014 New Mexico 0-99 O3 D24Hour

Mean 0.001094 0.001943 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et 
al. 2014 New York 0-99 O3 D24Hour

Mean 0.001094 0.000151 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et 
al. 2014 Florida 0-99 O3 D24Hour

Mean 
-
0.000401 0.000307 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et 
al. 2014 New 

Hampshire 0-99 O3 D24Hour
Mean 

-
0.001207 0.001238 Logistic  

Hospital 
Admissions, 
All Cardiac 
Outcomes 

Talbott et 
al. 2014 Washington 0-99 O3 D24Hour

Mean 
-
0.000904 0.000540 Logistic  

Mortality, All 
Cause 

Turner et 
al. 2016 Nationwide 30-99  Annual 0.005827 0.000963 Log-

linear 
Single-pollutant 
model 

Emergency 
Hospital 
Admissions, 
All Respiratory 

Zanobetti 
et al. 2009 26 U.S. 

communities 65-99  D24Hour
Mean 0.002049 0.000437 Log-

linear  
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E.7.1 Di et al. (2017)   

See full study description under Di et al. (2017) in Appendix E, Section E.1.1. 

Mortality, All-Cause (Single-Pollutant Model) 

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated from 

the hazard ratio (1.084) and 95% confidence interval of (1.081-1.086) associated with a 

change in annual mean PM2.5 exposure of 10.0 µg/m3 (Di et al., 2017, Table 2 Single-pollutant 

analysis).    

Mortality, All-Cause (Nearest Monitor Analysis) 

In a two-pollutant model, the coefficient and standard error for PM2.5 are estimated from the 

hazard ratio (1.061) and 95% confidence interval of (1.059-1.063) associated with a change in 

annual mean PM2.5 exposure of 10.0 µg/m3 (Di et al., 2017, Table 2 Nearest Monitor Analysis, 

Cox PH with GEE).    

Mortality, All-Cause (Cox Proportional Hazards Model with Mixed Effects (COXME))  

In a two-pollutant model, the coefficient and standard error for PM2.5 are estimated from the 

hazard ratio (1.081) and 95% confidence interval of (1.078-1.083) associated with a change in 

annual mean PM2.5 exposure of 10.0 µg/m3 (Di et al., 2017, Table S3 Main Analysis, Cox PH with 

mixed effects (COXME)).    
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E.7.2 Jones et al. (2015)   

Jones et al. (2015) assessed the impacts of PM2.5 and its chemical constituents (sulfate (SO4), 

ammonium (NH4), nitrate (NO3), elemental carbon (EC), and carbon-only portion of organic 

carbon aerosol) on respiratory health. The study encompassed all ages, races, and ethnicities 

with a case-crossover analysis in New York state. Analysis used 24-hour average PM2.5 

chemical constituent concentrations from the Community Multiscale Air Quality (CMAQ) 

model, and meteorological data from the National Climactic Data Center. The authors 

assessed hospital discharge data from the New York State Department of Health State 

Planning and Research Cooperative System (SPARCS) through principle diagnosis 

categorized by ICD-9 code (chronic bronchitis (ICD-9 491), emphysema (ICD-9 492), asthma 

(ICD-9 493), and chronic airway obstruction (ICD-9 496)). Authors used a single pollutant 

conditional logistic regression model to analyze the respiratory hospital admission and PM2.5 

chemical constituent data over time and by season. The authors calculated hazard ratios 

(HRs) using the PHREG procedure in SAS (version 9.2) with 95% confidence intervals from the 

regression models. Jones et al. (2015) found that PM2.5 and its chemical constituents showed 

significant associations between total PM2.5 mass and hospital admissions in the year-round 

model and for all exposure lags (0-4 days). Of all the PM2.5 chemical constituents, sulfate had 

the strongest association with respiratory hospital admissions, particularly during the 

summer months. Additionally, sulfate was the largest contributor to the PM2.5 total mass 

(49.9%). 

Hospital Admissions, Respiratory-1 (ICD-9 Codes 491, 492, 493, 496) 

In a year-round single-pollutant model, the coefficient and standard error were estimated 

from a hazard ratio of 1.006 (95% CI: 1.003-1.008) for a 7.48 µg/m3 increase in daily mean PM2.5 

concentrations, lagged by 4 days. The model was adjusted for season. (Jones et al. 2015, 

Figure 2).  
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E.7.3 McConnell et al. (2010)   

McConnell et al. (2010) examined the association between long-term traffic-related air 

pollution (PM2.5, PM10, O3, and NO2) exposure and incident asthma in children. The authors 

collected data for three years from a cohort of 2,497 kindergarten and first-grade children 

who entered the Southern California Children’s Health Study without asthma or wheeze. 

McConnell et al. (2010) defined new-onset asthma as physician-diagnosed asthma reported 

by parents on a yearly questionnaire. While the primary focus of the study was traffic-related 

air pollution from local vehicle emissions, the authors also utilized ambient air pollution 

exposure data from central site monitors in each of the 13 communities in the Southern 

California Children’s Health Study. The authors used a multilevel Cox proportional hazards 

model to estimate the association between ambient air pollution exposure and new-onset 

asthma, controlling for race/ethnicity, secondhand smoke exposure, and pets in the home. 

The authors concluded that traffic-related pollution exposure may contribute to an increased 

risk of new-onset asthma in children.  

Incidence, Asthma 

In a single-pollutant model, the coefficient and standard error were estimated from a hazard 

ratio of 1.66 (95% CI: 0.91-3.05) for a 17.4 µg/m3 (range of exposure in the 13 communities) 

increase in annual average PM2.5 exposure (McConnell et al. 2010, Table 4). 
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E.7.4 Nishimura et al. (2013)   

Nishimura et al. (2013) investigated the relationship between long-term early-life pollution 

exposure (PM2.5, PM10, O3, NO2, and SO2) and asthma onset in Latino and African American 

children in five urban areas (Chicago, IL; Bronx, NY; Houston, TX; San Francisco, CA; Puerto 

Rico). The authors obtained data from the Genes–environments and Admixture in Latino 

Americans (GALA II) Study and the Study of African Americans, Asthma, Genes and 

Environments (SAGE II). GALA II and SAGE II are case-control studies that enrolled children 

with and without asthma. The studies defined case subjects as children with physician-

diagnosed asthma plus two or more symptoms of coughing, wheezing, or shortness of breath 

in the two years before study enrollment while control subjects were children with no 

reported history of asthma, lung disease, or chronic illness, and no reported symptoms of 

coughing, wheezing, or shortness of breath in the two years before study enrollment. The 

authors estimated annual average pollution exposures during the first year of life as well as 

the first three years of life from self-reported residential histories by calculating inverse 

distance-squared weighted averages from the four closest U.S. EPA Air Quality System 

monitoring stations within 50 km. The authors first used regional- and study-specific logistic 

regression models to estimate the association between asthma diagnosis and pollution 

exposure, controlling for demographics and socioeconomic status and subsequently 

combined the regression coefficients into a multi-region estimate using a random-effects 

meta-analysis. Nishimura et al. (2013) showed that early-life air pollution exposure may 

increase the risk for asthma development in later childhood for Latino and African American 

cohorts.  

Incidence, Asthma 

In a single-pollutant model estimating PM2.5 exposure during the first year of life, the 

coefficient and standard error were estimated from an odds ratio of 1.03 (95% CI: 0.90-1.18) 
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for a 1 µg/m3 increase in average annual PM2.5 levels at the residential address during the first 

year of life (Nishimura et al. 2013, Figure 2). 
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E.7.5 Pope et al. (2015)   

Pope et al. (2015) evaluated the relationship between long-term exposure to ambient PM2.5 

and risk of death from CVD and cardiometabolic disease, including effect modification of the 

relationship by pre-existing cardiometabolic risk factors, in the ACS Cancer Prevention Study 

II cohort (ages 30+). PM2.5 exposures were estimated at home addresses based on a land use 

regression model with Bayesian Maximum Entropy kriging of residuals (LURBME). Pope et al. 

utilized a Cox proportional hazards model controlling for individual-level covariates which 

included variables that characterized current and former smoking habits, exposure to second 

-hand cigarette smoke, workplace PM2.5 exposure in each subject’s main lifetime occupation, 

self -reported exposure to dust and fumes in the workplace, marital status, level of education, 

body mass index, consumption of alcohol, and quartile ranges of dietary fat index and 

quartile ranges of a dietary vegetable/fruit/fiber index. Ecological covariates included median 

household income; percentage of people with <125% of poverty level income; percentage of 

unemployed individuals aged ≥16 years; percentage of adults with <12th grade education; 

and percentage of the population who were Black or Hispanic. 

Mortality, All-Cause (LURBME) 

In a single-pollutant model, the coefficient and standard error are estimated from the hazard 

ratio (1.07) and 95% confidence intervals (95% CI: 1.06-1.09) for a 10 µg/m3 increase in 

monthly PM2.5 exposure levels averaged from 1999-2004 (Pope, et al., 2015, Table 1. Cox 

model with individual-level plus ecological covariates; exposure based on LUR-BME).  
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E.7.6 Talbott et al. (2014)   

Talbott et al. (2014) assessed daily PM2.5 concentrations and hospitalizations for 

cardiovascular disease in Florida, Massachusetts, New Hampshire, New Jersey, New Mexico, 

New York, and Washington from 2001 to 2008. The authors gathered hospital discharge data 

from each state’s respective data stewards. Talbott et al. (2014) conducted a time-stratified 

case-crossover study using hospitalization data for all cardiovascular disease (ICD-9 390-459) 

and for several specific cardiovascular diseases within the ICD-9 390-459 range. Authors used 

a downscaling Bayesian space-time modeling approach to combine air monitoring data and 

air gridded numerical outputs from the Community Multi-Scale Air Quality Model (CMAQ) to 

predict daily PM2.5 concentrations. The authors gathered meteorological data from the CDC 

Wonder North America Land Data Assimilation System Daily Air Temperatures and Heat 

Index. Talbott et al. (2014) used conditional logistic regression adjusted for O3 (same day as 

PM2.5) and maximum apparent temperature (same day as admission).  

Hospital Admissions, All Cardiac Outcomes (ICD-9 Codes 390-459) 

In a two-pollutant multivariable model with O3, the coefficient and standard error are 

estimated from an odds ratio of 1.005 (95% CI: 0.998-1.012) for Massachusetts; 1.011 (95% CI: 

1.007-1.016) for New Jersey; 1.011 (95% CI: 0.973-1.050) for New Mexico; 1.011 (95% CI: 1.008-

1.014) for New York; 0.996 (95% CI: 0.990-1.002) for Florida; 0.988 (95% CI: 0.965-1.013) for 

New Hampshire; and 0.991 (95% CI: 0.981-1.002) for Washington. Each odds ratio is for a 10 

µg/m3 increase in the averaged daily mean PM2.5 concentration 0-, 1-, and 2-day lags (Talbott 

et al. 2014, Table 3). 
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E.7.7 Turner et al. (2016)   

See full study description under Turner et al. (2016) in Appendix E, Section E.1.2. 

Mortality, All-Cause (Single-Pollutant Model) 

In a single-pollutant model, the coefficient and standard error for PM2.5 are estimated from 

the hazard ratio (1.06) and 95% confidence interval of (1.04–1.08) associated with a change of 

10.0 µg/m3 in the mean PM2.5 exposure level from 1999-2004 (Turner et al., 2016, Table E10 

HBM PM2.5, 1982-2004).    
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E.7.8 Zanobetti et al. (2009)   

Zanobetti et al. (2009) examined the relationship between daily PM2.5 levels and emergency 

hospital admissions for cardiovascular causes, myocardial infarction, congestive heart 

failure, respiratory disease, and diabetes among 26 U.S. communities from 2000-2003. The 

authors used meta-regression to examine how this association was modified by season- and 

community-specific PM2.5 composition while controlling for seasonal temperature as a 

substitute for ventilation. Overall, the authors found that PM2.5 mass higher in Ni, As, and Cr as 

well as Br and organic carbon significantly increased its effects on hospital admissions. For a 

10 µg/m3 increase in 2-day averaged PM2.5, a 1.89% (95% CI: 1.34-2.45) increase in 

cardiovascular disease admissions, a 2.25% (95% CI: 1.10-3.42) increase in myocardial 

infarction admissions, a 1.85% (95% CI: 1.19-2.51) increase in congestive heart failure 

admissions, a 2.74% (95% CI: 1.30-4.20) increase in diabetes admissions, and a 2.07% (95% CI: 

1.20-2.95) increase in respiratory admissions were observed. The relationship between PM2.5 

and cardiovascular admissions was significantly modified when the mass of PM2.5 was high in 

Br, Cr, Ni, and sodium ions, while mass high in As, Cr, Mn, organic carbon, Ni and sodium ions 

modified the myocardial infarction relationship and mass high in As, organic carbon, and 

sulfate ions modified the diabetes admission rates.  

Emergency Hospital Admissions, All Respiratory (ICD-9 Codes 460-519) 

In a single-pollutant model, the coefficient and standard error are estimated from the percent 

change in risk (2.07%) and 95% confidence interval (1.2% - 2.95%) for a 10 µg/m3 increase in 

2-day averaged PM2.5 (Zanobetti et al. 2009, Table 3). 
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E.8 Sensitivity Analysis – At-Risk Populations 

Table E-8 summarizes the PM2.5 health impacts functions considered by U.S. EPA to be 

sensitivity analyses that characterize risk experienced by certain subpopulations. Below, we 

present a brief summary of each of the studies and any items that are unique to the study.  

Table E-8 Core Health Impact Functions for Particulate Matter Sensitivity Analyses of 
At-Risk Populations 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

ER Visits, 
Asthma 

Alhanti 
et al. 2016 

Atlanta, 
Dallas, St. 
Louis 

0-4  D24HourMean 0.0025  0.0019 
Log-
linear White 

ER Visits, 
Asthma 

Alhanti 
et al. 

2016 
Atlanta, 
Dallas, St. 
Louis 

0-4  D24HourMean 0.0037  0.0012 Log-
linear 

Non-
White 

ER Visits, 
Asthma 

Alhanti 
et al. 2016 

Atlanta, 
Dallas, St. 
Louis 

5-
18  D24HourMean 0.0025  0.0016 

Log-
linear White 

ER Visits, 
Asthma 

Alhanti 
et al. 

2016 
Atlanta, 
Dallas, St. 
Louis 

5-
18 

 D24HourMean 0.0049  0.0012 Log-
linear 

Non-
White 

Mortality, 
All Cause 

Di et 
al. 2017 Nationwide 

65-
99 O3 Annual 0.0061  0.0001 

Log-
linear 

Non-
Hispanic 
White 

Mortality, 
All Cause 

Di et 
al. 2017 Nationwide 

65-
99 O3 Annual 0.0110 0.0008 

Log-
linear 

Hispanic 
White 

Mortality, 
All Cause 

Di et 
al. 

2017 Nationwide 65-
99 

O3 Annual 0.0189 0.0004 Log-
linear 

Black 

Mortality, 
All Cause 

Di et 
al. 2017 Nationwide 

65-
99 O3 Annual 0.0092 

 
(0.0010) 

Log-
linear Asian 

Mortality, 
All Cause 

Di et 
al. 2017 Nationwide 

65-
99 O3 Annual 0.0095  0.0019 

Log-
linear 

Native 
American 
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E.8.1 Alhanti et al. (2016)   

Alhanti et al. (2016) examined the relationship between daily PM2.5 concentrations and 

emergency room visits for asthma (ICD-9 493, 786.07) among residents of all ages in Atlanta 

(1993-2009), Dallas (2006-2009), and St. Louis (2001-2007). Patient-level ER visit data were 

obtained from hospitals in the three cities. Daily 24-hour average PM2.5 concentrations were 

estimated using data from all available monitors in the region including monitors from U.S. 

EPA AQS in all three cities, as well as the South Eastern Aerosol Research and 

Characterization (SEARCH) network and Assessment of the Spatial Aerosol Composition 

(ASACA) network in Atlanta. The authors ran city-specific daily time-series Poisson regression 

models by age group (0-4, 5-18, 19-39, 40-64, 65-99) and performed additional analysis 

stratified by race (White, non-White) and sex. Models controlled for temperature, day of the 

week, holidays, race, age, and sex. 

Emergency Room Visits, Asthma 

In single-pollutant models for ages 0-4, the coefficient and standard error are estimated from 

the three-city weighted average rate ratio (1.02) and 95% confidence interval (0.99-1.05) for 

White children and (1.03) and 95% confidence interval (1.01-1.05) for non-White children for a 

8 µg/m3 increase in three-day moving average PM2.5 concentrations (Alhanti et al. 2016, 

Supplemental Table 4). 

In single-pollutant models for ages 5-18, the coefficient and standard error are estimated 

from the three-city weighted average rate ratio (1.02) and 95% confidence interval (1.00-1.05) 

for White children and (1.04) and 95% confidence interval (1.02-1.06) for non-White children 

for a 8 µg/m3 increase in three-day moving average PM2.5 concentrations (Alhanti et al. 2016, 

Supplemental Table 4). 
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E.8.2 Di et al. (2017)   

See full study descriptionunder Di et al. (2017) in Appendix E, Section E.1.1. 

Mortality, All-Cause 

In multi-pollutant models, the coefficient and standard error are estimated from a hazard 

ratio of 1.063 (95% CI: 1.060, 1.065) for White; 1.208 (95% CI: 1.199, 1.217) for Black; 1.096 

(95% CI: 1.075, 1.117) for Asian; 1.116 (95% CI: 1.100, 1.133) for Hispanic; and 1.100 (95% CI: 

1.060, 1.140) for Native Americans. Each odds ratio is for a 10 µg/m3 increase in annual mean 

PM2.5 exposure (Di et al. 2017, Supplementary Table S3 (GEE, By Race)). 

 

 



Appendix F – Core Ozone Health Impact Functions in BenMAP 
 

 
BenMAP User Manual v0.5  April 2024 

F-1 

Appendix F. Core Ozone Health Impact 

Functions in BenMAP 

In this Appendix, we present the core health impact functions used to estimate ozone-related 

adverse health effects, i.e., the functions that, as of the current release, U.S. EPA routinely 

uses in its regulatory analyses. Each sub-section has a table with a brief description of each 

health impact function and the underlying parameters. Following each table, we present a 

brief summary of each of the studies and any items that are unique to the study.   

Note that Appendix C mathematically derives the standard types of health impact functions 

encountered in the epidemiological literature, such as, log-linear, logistic and linear, so we 

simply note here the type of functional form. And Appendix D presents a description of the 

sources for the incidence and prevalence data used in the health impact functions.  

F.1 Short-term Mortality  

Table F-1 summarizes the core health impacts functions used to estimate the relationship 

between ozone and mortality. Below, we present a brief summary of each of the studies and 

any items that are unique to the study. 
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Table F-1 Core Health Impact Functions for Ozone and Mortality* 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Mortality, 
Respiratory 

Katsouyanni 
et al. 2009 

90 U.S. 
Cities 0-99  

D1Hou
rMax 

0.00
0727 

0.0005
67 

Log-
linear Warm season.  

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. 
Cities 

0-99  D8Hou
rMax 

0.00
0727 

0.0005
67 

Log-
linear 

Warm season. 
8-hour max 
from 1-hour 
max using 
adjustment 
factor of 1.13, 
resulting in 
effective beta 
of 0.000822. 

Long-term 
Mortality, 
Respiratory 

Turner et al. 2016 
Nationwi
de 

30-
99 

PM2.5

, 
NO2 

Annual 
(D8Ho
urMax) 

0.00
7696 

0.0011
76 

Log-
linear Warm season.  

Mortality, 
Respiratory 

Zanobetti 
and 
Schwartz 

2008 48 U.S. 
Cities 

0-99  D8Hou
rMax 

0.00
0827 

0.0002
28 

Log-
linear 

D8HourMean 
approximated 
as D8HourMax 

*Unless otherwise stated, mortality is short-term. 
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F.1.1 Katsouyanni et al. (2009)   

Katsouyanni et al. (2009) used time series methods to examine the relationship between 

short-term O3 exposures and mortality across the U.S for all ages. The study utilized mortality 

data from the National Center for Health Statistics (www.cdc.gov/nchs) for years 1987 

through 1996, excluding accidental deaths (i.e., International Classification of Diseases (ICD]-

9 800). 90 U.S. cities with population sizes varying from about 250,000 to above 9 million with 

the largest populations were included. Daily number of deaths ranged from 5 to 198. All 90 

cities had daily summer O3 measurements. Investigators conducted extensive simulation 

studies to test 1) the choice of the smoothing method and basic functions used to estimate 

the smooth function of time in the city-specific models, and 2) the number of degrees of 

freedom to be used in the smooth function of time. The investigators also evaluated whether 

each city should be assigned the same model specification or whether each city-specific 

model should depend on city-specific characteristics. For the former, the same degrees of 

freedom (ranging from 1 to 20 df/year of data) were assigned to the smooth function of time 

for every city. The range was determined by choosing the minimum possible degrees of 

freedom per year up to a maximum degrees of freedom per year that essentially removed all 

variation in the data beyond time scales of one week. Also, the collective experience of the 

investigators indicated that using more than 20 df/year does not substantially affect the risk 

estimates. For the latter approach, the degrees of freedom for the smooth function of time 

were chosen separately for each city using a fit criterion, such as the Akaike Information 

Criterion (AIC), or by minimizing the partial autocorrelation function (PACF) of the residuals. 

Nonparametric methods underestimated the standard error of the air pollution regression 

coefficient, penalized splines gave relatively small bias, and PACF in combination with 

penalized splines performed relatively well in terms of bias. Therefore, the identified risk 

estimate was a summer-only penalized spline estimate of respiratory mortality. 
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Short-term Mortality, Respiratory 

In a single pollutant model, the coefficient and standard error are based on the summer-only 

penalized spline estimate of respiratory mortality of 0.73% (-0.39, 1.85%) per 10 ppb increase 

in O3 from distributed lag days (Katsouyanni et al. 2009, Table 24: Distributed Lags; Penalized 

splines; O3 Results).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 8-

hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) (Anderson 

and Bell 2010, Table 2). 
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F.1.2 Turner et al. (2016)   

Turner et al. (2016) examined the relationship between long-term O3 exposure (1982-2004) 

and mortality (all-cause, cause-specific) in American Cancer Society Cancer Prevention Study-

II participants (aged 30-99 years). A hierarchal Bayesian space-time model based on National 

Air Monitoring Stations, State and Local Air Monitoring Stations, and Community Multi-Scale 

Air Quality model data estimated daily eight-hour maximum ozone concentrations at the 

participant’s address. The models considered meteorological data and levels of other 

ambient pollutants (PM2.5, both regional and near-source, and NO2). Turner et al. (2016) 

utilized Cox proportional hazard models adjusted a priori for individual, socio-demographic, 

and ecological variables. Notably, the study compared annual mortality with warm-season O3 

exposures, so full-year baseline incidence rates will be used with risk estimates from this 

study. 

Long-term Mortality, Respiratory 

In a multi-pollutant model, the coefficient and standard error are based on the warm-season 

specific hazard ratio of 1.08 (1.06-1.11) per 10 ppb increase in seasonal average of daily 8-

hour maximum O3 concentrations (Turner et al. 2016, Table E9: Diseases of the respiratory 

system (cause of death), HBM O3 (multipollutant model data, fully adjusted HR)).  
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F.1.3 Zanobetti and Schwartz (2008)   

Zanobetti and Schwartz (2008) investigated the effects of short-term O3 exposure on mortality 

(all-cause, cardiovascular, stroke, and respiratory) in an unrestricted population of children, 

adults, and older adults (aged 0-99 years). Between 1998 and 2000, the authors collected 

mortality data from the National Center for Health Statistic in 48 cities across the United 

States. Along with eight-hour ozone concentrations and meteorological data obtained from 

U.S. EPA’s Air Quality System Technology Transfer Network, the authors utilized a generalized 

linear model with quasi Poisson link functions to estimate the effects of short-term ozone on 

respiratory mortality. The model adjusted for season, day of the week, and temperature. 

Since ozone concentrations vary between seasons, the authors decided to restrict their 

analysis to ozone warm season (June - August).  

Short-term Mortality, Respiratory 

In a single pollutant model, the coefficient and standard error are based on the warm season 

excess risk estimate of 0.83% (95% CI: 0.38-1.28%) for an increase of 10 ppb in daily 8-hour 

mean O3 concentrations over a summed lag structure of zero to three days (Zanobetti and 

Schwartz, 2008, Table 1).  

The D8HourMean metric is approximated as D8HourMax in this function. 
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F.2 Hospital Admissions   

Table F-2 summarizes the core health impact functions used to estimate the relationship 

between ozone and hospital admissions. Below, we present a brief summary of each of the 

studies and any items that are unique to the study. 

Table F-2 Core Health Impact Functions for Ozone and Hospital Admissions 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

All 
Respiratory 

Katsouyanni 
et al. 2009 

14 U.S. 
Cities 

65-
99  D1HourMax 0.000280 0.000176 

Log-
linear Warm season 

All 
Respiratory 

Katsouyanni 
et al. 2009 

14 U.S. 
Cities 

65-
99  D8HourMax 0.000280 0.000176 

Log-
linear 

Warm season. 
8-hour max 
from 1-hour 
max using 
adjustment 
factor of 1.13, 
resulting in 
effective beta 
of 0.000316. 
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F.2.1 Katsouyanni et al. (2009)   

Katsouyanni et al. (2009) used time series methods to examine the relationship between daily 

O3 concentrations and hospital admissions in North America. For U.S. benefits estimation 

purposes, we focus on analyses performed using the U.S hospital admission datasets. These 

datasets included 14 cities with populations between 291,000 and 5,377,000 between 1987-

1996 with city-wide daily 1-hour maximum O3 concentrations ranging from ~34-60 ppb. The 

authors used a first stage analysis protocol that used generalized linear models with either 

penalized or natural splines to adjust for seasonality, with varying degrees of freedom. The 

number of degrees of freedom were also chosen by minimizing the partial autocorrelation 

function of the model’s residuals. Model specification approach accounted for seasonal 

patterns, weekend and vacation effects, and epistemics of respiratory disease. Data were also 

analyzed to detect potential thresholds in the concentration-response relationships. The 

second stage analysis used pooling approaches and assessed potential effect modification by 

sociodemographic characteristic and indicators of the pollution mixture across study regions.  

Hospital Admissions, All Respiratory (ICD-9 Codes 460-519) 

In a two-pollutant model including PM10, the coefficient and standard error are based on the 

warm season excess risk estimate of 0.28% (-0.07, 0.62%) per 10 ppb increase in O3 averaged 

over lags 0-1 day (Katsouyanni et al., 2009, Table 40: Average of Lags 0-1 day; Penalized 

splines).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 8-

hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) (Anderson 

and Bell 2010, Table 2). 
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F.3 Emergency Room Visits   

Table F-3 summarizes the core health impacts functions used to estimate the relationship 

between ozone and emergency room (ER) visits. Below, we present a brief summary of each 

of the studies and any items that are unique to the study. 

Table F-3 Core Health Impact Functions for Ozone and Emergency Room Visits 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Respiratory Barry 
et al. 

2018 Atlanta, GA 0-
99 

 D8HourMax 0.00118  0.00040 Log-
linear 

All 
year 

Respiratory Barry 
et al. 

2018 Birmingham, 
AL 

0-
99 

 D8HourMax 0.00118  0.00059 Log-
linear 

All 
year 

Respiratory Barry 
et al. 

2018 Dallas, TX 0-
99 

 D8HourMax 0.00195  0.00049 Log-
linear 

All 
year 

Respiratory Barry 
et al. 

2018 Pittsburgh, 
PA 

0-
99 

 D8HourMax 0.00118  0.00040 Log-
linear 

All 
year 

Respiratory Barry 
et al. 

2018 St. Louis, 
MO-IL 

0-
99 

 D8HourMax 0.00079  0.00030 Log-
linear 

All 
year 
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F.3.1 Barry et al. (2018)   

Barry et al. (2018) investigated the effects of short-term ozone exposure on emergency 

department visits for respiratory disease (ICD-9 493, 786.07, 460-466, 477, 491, 492, 496, 480–

486, 466.1, 466.11, 466.19) in an unrestricted population of children, adults, and older adults 

(aged zero-99 years) within five cities (Atlanta, GA, Birmingham, AL, Dallas, TX, Pittsburgh, PA, 

and St. Louis, MO-IL) across the United States. Authors obtained individual-level health data 

from hospitals and hospital associations in each of the five cities. Models fusing air quality 

monitor data with Community Multi-Scale Air Quality modeled data at 12 x 12-km grids were 

used to estimate ozone exposure. Barry et al. (2018) assessed associations with short-term 

ozone exposure with daily eight-hour maximum ozone concentrations. The authors 

implemented Poisson log-linear models to estimate risk values with three day moving 

averages.  

ER Visits, Respiratory (ICD-9 Codes 493, 786.07, 460-466, 477, 491, 492, 496, 480–486, 466.1, 

466.11, 466.19) 

In single-pollutant models, the coefficient and standard error are based on rate ratios of 1.03 

(95% CI: 1.01-1.05) in Atlanta, GA, 1.03 (95% CI: 1.00-1.06) in Birmingham, AL, 1.05 (95% CI: 

1.02-1.07) in Dallas TX, 1.03 (95% CI: 1.01-1.05) in Pittsburgh, PA, and 1.02 (95% CI: 1.01-1.04) 

in St. Louis, MO-IL for an increase of 25 ppb in full-year 8-hour daily maximum O3 

concentrations (three day moving average) (Barry et al. 2018, Table 3). 
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F.4 Minor Effects 

Table F-4 summarizes the core health impacts functions used to estimate the relationship 

between ozone and minor effects. Below, we present a brief summary of each of the studies 

and any items that are unique to the study. 

Table F-4 Core Health Impact Functions for Ozone and Minor Effects 

Effect Author Year Location Age Co-
Poll Metric Beta Std Err Form Notes 

School 
Loss 
Days, All 
Cause 

Gilliland et 
al. 2001 Southern 

California 5-17  D8HourMax 0.007824 0.004445 Log-
linear 

All year, 8-
hour max 
from 8-hour 
mean. 

Minor 
Restricted 
Activity 
Days 

Ostro and 
Rothschild 1989 Nationwide 18-

64 PM2.5 D1HourMax 0.002200 0.000658 Log-
linear  

Minor 
Restricted 
Activity 
Days 

Ostro and 
Rothschild 

1989 Nationwide 18-
64 

PM2.5 D8HourMax 0.002200 0.000658 Log-
linear 

8-hour max 
from 1-hour 
max using 
adjustment 
factor of 
1.14, 
resulting in 
effective 
beta of 
0.002508. 

Hay 
Fever/ 
Rhinitis 

Parker et 
al. 2009 Nationwide 3-17 

PM2.5, 
PM2.5-

10, 
NO2, 
SO2 

Annual 
(D24HourMean) 0.01655  0.00390 Logistic 

Warm 
season; long 
term 

Hay 
Fever/ 
Rhinitis 

Parker et 
al. 2009 Nationwide 3-17 

PM2.5, 
PM2.5-

10, 
NO2, 
SO2 

Annual 
(D8HourMax) 0.01655  0.00390 Logistic 

Warm 
season; long 
term; 8-hour 
max from 
24-hour 
mean using 
adjustment 
factor of 
0.654, 
resulting in 
effective 
beta of 
0.010818. 
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F.4.1 Gilliland et al. (2001) 

Gilliland et al. (2001) examined the association between air pollution and school absenteeism 

among 4th grade school children (ages 9-10) in 12 southern Californian communities. The 

study was conducted from January through June 1996. The authors used school records to 

collect daily absence data and parental telephone interviews to identify causes. They defined 

illness- related absences as respiratory or non-respiratory. A respiratory illness was defined as 

an illness that included at least one of the following: runny nose/sneezing, sore throat, cough, 

earache, wheezing, or asthma attack. The authors used 15 and 30 day distributed lag models 

to quantify the association between ozone, PM10, and NO2 and incident school absences. 

Ozone levels were positively associated with all school absence measures and significantly 

associated with all illness-related school absences (non-respiratory illness, respiratory illness, 

URI and LRI). Neither PM10 nor NO2 was significantly associated with illness-related school 

absences, but PM10 was associated with non-illness related absences. The health impact 

function for ozone is based on the results of the single pollutant model.  

School Loss Days  

Gilliland et al. (2001) defines an incident absence as an absence that followed attendance on 

the previous day and the incidence rate as the number of incident absences on a given day 

over the population at risk for an absence on a given day (i.e. those children who were not 

absent on the previous day). Since school absences due to air pollution may last longer than 

one day, an estimate of the average duration of school absences could be used to calculate 

the total avoided school loss days from an estimate of avoided new absences. A simple ratio 

of the total absence rate divided by the new absence rate would provide an estimate of the 

average duration of school absences, which could be applied to the estimate of avoided new 

absences as follows:  
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Equation F-1 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 

∆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = −�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × �𝑒𝑒−𝛽𝛽×𝑂𝑂3 − 1�� × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑝𝑝 

Since the function is log-linear, the baseline incidence rate (in this case, the rate of new 

absences) is multiplied by duration, which reduces to the total school absence rate. 

Therefore, the same result would be obtained by using a single estimate of the total school 

absence rate in the C-R function. Using this approach, we assume that the same relationship 

observed between pollutant and new school absences in the study would be observed for 

total absences on a given day. As a result, the total school absence rate is used in the function 

below. The derivation of this rate is described in the section on baseline incidence rate 

estimation.  

For all absences, the coefficient and standard error are based on a percent increase of 16.3 

percent (95% CI -2.6 percent, 38.9 percent) associated with a 20 ppb increase in 8-hour 

average ozone concentration (2001, Table 6, p. 52).  

A scaling factor is used to adjust for the number of school days in the ozone season. In the 

modeling program, the function is applied to every day in the ozone season (May 1 - 

September 30), however, in reality, school absences will be avoided only on school days. We 

assume that children are in school during weekdays for all of May, two weeks in June, one 

week in August, and all of September. This corresponds to approximately 2.75 months out of 

the 5 month season, resulting in an estimate of 39.3% of days (2.75/5*5/7).  

In addition, not all children are at-risk for a new school absence, as defined by the study. On 

average, 5.5% of school children are absent from school on a given day (U.S. Department of 

Education, 1996, Table 42-1). Only those who are in school on the previous day are at risk for 
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a new absence (1-0.055 = 94.5%). As a result, a factor of 94.5% is used in the function to 

estimate the population of school children at-risk for a new absence.  

Incidence Rate: daily school absence rate = 0.055 (U.S. Department of Education, 1996, Table 

42-1)  

Population: population of children ages 9-10 not absent from school on a given day = 94.5% 

of children ages 9-10 (The proportion of children not absent from school on a given day 

(5.5%) is based on 1996 data from the U.S. Department of Education (1996, Table 42-1).)  

Scaling Factor: Proportion of days that are school days in the ozone season = 0.393.  

(Ozone is modeled for the 5 months from May 1 through September 30. We assume that 

children are in school during weekdays for all of May, 2 weeks in June, 1 week in August, and 

all of September. This corresponds to approximately 2.75 months out of the 5 month season, 

resulting in an estimate of 39.3% of days (2.75/5*5/7). ) 
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F.4.2 Ostro and Rothschild (1989) 

Ostro and Rothschild (1989) estimated the impact of PM2.5 and ozone on the incidence of 

minor restricted activity days (MRADs) and respiratory-related restricted activity days (RRADs) 

in a national sample of the adult working population, ages 18 to 65, living in metropolitan 

areas. The study population is based on the Health Interview Survey (HIS), conducted by the 

National Center for Health Statistics. In publications from this ongoing survey, non-elderly 

adult populations are generally reported as ages 18-64. From the study, it is not clear if the 

age range stops at 65 or includes 65 year olds. We apply the C-R function to individuals ages 

18-64 for consistency with other studies estimating impacts to non-elderly adult populations. 

The annual national survey results used in this analysis were conducted in 1976-1981. 

Controlling for PM2.5, two-week average ozone had a highly variable association with RRADs 

and MRADs. Controlling for ozone, two-week average PM2.5 was significantly linked to both 

health effects in most years. The C-R function for ozone is based on the co-pollutant model 

with PM2.5.  

The study is based on a “convenience” sample of non-elderly individuals. Applying the C-R 

function to this age group is likely a slight underestimate, as it seems likely that elderly are at 

least as susceptible to ozone as individuals under 65. A number of studies have found that 

hospital admissions for the elderly are related to ozone exposures (e.g., Schwartz, 1994b; 

Schwartz, 1995).  

Minor Restricted Activity Days  

The coefficient and standard error used in the C-R function are based on a weighted average 

of the coefficients in Ostro and Rothschild (1989, Table 4). The derivation of these estimates is 

described below.  



Appendix F – Core Ozone Health Impact Functions in BenMAP 
 

 
BenMAP User Manual v0.5  April 2024 

F-16 

Incidence Rate: daily incidence rate for minor restricted activity days (MRAD) = 0.02137 

(Ostro and Rothschild, 1989, p. 243)  

Population: adult population ages 18 to 64  

The coefficient used in the C-R function is a weighted average of the coefficients in Ostro and 

Rothschild (1989, Table 4) using the inverse of the variance as the weight. The calculation of 

the MRAD coefficient and its standard error is exactly analogous to the calculation done for 

the work-loss days coefficient based on Ostro (1987).  

Equation F-2 
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The standard error of the coefficient is calculated as follows, assuming that the estimated 

year-specific coefficients are independent:   

Equation F-3 
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F.4.3 Parker et al. (2009)   

Parker et al. (2009) investigated the associations between long-term O3 exposure and 

respiratory allergies in an unrestricted population of children (aged 3-17 years) sampled from 

the United States National Health Interview Survey. Authors obtained symptom data from 

participant parents, who reported respiratory allergies on annual surveys. Parker et al. (2009) 

placed all study participants reporting symptoms of respiratory allergies or hay fever into a 

combined rhinitis group. Parker et al. (2009) linked annual averages of SO2, NO2, PM2.5, and 

PM2.5-10 and warm season (May to September) O3 averages to participant’s addresses through 

ambient air pollution and meteorological data collected from U.S. EPA Air Quality System 

monitors. The authors adjusted their logistic regression models for survey year, poverty-level, 

race/ethnicity, age, family structure, insurance coverage, usual source of care, education of 

adult, urban-rural status, region, and median county-level income.  

Incidence, Hay Fever/Rhinitis 

In a multi-pollutant model, the coefficient and standard error are based on the odds ratio of 

1.18 (95% CI: 1.09-1.27) for a 10 ppb increase in 24-hour mean, warm season O3 (Parker et al., 

2009, Table 4).  

The Health Impact Function was adjusted from the daily 24-hour mean metric to the daily 8-

hour max metric using a ratio of 1/1.53 = 0.65359 (inverse of the ratio of 8-hour max to 24-

hour mean ozone) (Anderson and Bell 2010, Table 2). 
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F.5 Asthma-Related Effects   

Table F-5 summarizes the core health impacts functions used to estimate the relationship 

between ozone and asthma exacerbation. Below, we present a brief summary of each of the 

studies and any items that are unique to the study. Based on advice from the SAB-HES (U.S. 

EPA-SAB 2004), regardless of the age ranges included in the source epidemiology studies, we 

extend the applied population to ages 6 to 18, reflecting the common biological basis for the 

effect in children in the broader age group. 

Table F-5 Core Health Impact Functions for Ozone and Asthma-Related Effects 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Asthma 
Symptoms, 
Cough 

Lewis et 
al. 

2013 Detroit, 
MI 

5-
12 

 D8HourMax 0.00708  0.00372 Logistic All year 

Asthma 
Symptoms, 
Wheeze 

Lewis et 
al. 

2013 Detroit, 
MI 

5-
12 

 D8HourMax 0.00764  0.00410 Logistic All year 

Asthma 
Symptoms, 
Chest 
tightness 

Lewis et 
al. 

2013 Detroit, 
MI 

5-
12 

 D8HourMax 0.01140  0.00505 Logistic All year 

Asthma 
Symptoms, 
Shortness 
of breath 

Lewis et 
al. 

2013 Detroit, 
MI 

5-
12 

 D8HourMax 0.00423  0.00386 Logistic All year 

Asthma 
Onset 

Tétreault 
et al. 

2016 Québec, 
Canada 

0-
17 

 Annual 
(D8HourMax) 

0.02075  0.00146 Log-
linear 

Warm 
season; 
separate 
HIFs for 
ages 0-
4; 5-17 
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F.5.1 Lewis et al. (2013)   

Lewis et al. (2013) studied the effects of short-term O3 exposure on frequency of asthma 

symptoms in an asthmatic population of primarily lower-income, African American and 

Latino children (aged five-12 years) in East and Southwest Detroit, MI. Authors obtained 

health and demographic data through questionnaires filled out by parents or guardians for 14 

consecutive days in each studied season. Questionnaires highlighted participant’s asthma 

symptoms (cough, wheeze, shortness of breath, chest tightness), demographic information, 

medication use, and presence of second-hand smoke. The authors acquired maximum one-

hour and maximum 8-hour O3 concentrations and meteorological data from two community-

level monitors placed on East and Southwest Detroit, MI school rooftops. Lewis et al. (2013) 

implemented a combination of generalized estimating equations and alternative logistic 

regression models to estimate the associations between short-term O3 exposure and rate of 

asthma symptoms. Models adjusted for age, sex, location (Eastside or Southwest), race, 

household income, smoker in the home, season, and variables for companion home 

intervention study (control or intervention), time (pre- or post-intervention), and the 

interaction between intervention group status and time. Lewis et al. (2013) observed positive 

associations between short-term O3 exposure and asthma symptoms. 

Asthma Symptoms 

In single-pollutant models, the coefficient and standard error are based on the all year odds 

ratios of 1.12 (95% CI: 0.99-1.25) for cough, 1.13 (95% CI: 0.99-1.28) for wheeze, 1.20 (95% CI: 

1.02-1.40) for chest tightness, and 1.07 (95% CI: 0.95-1.21) for shortness of breath, all for a 16 

ppb (interquartile range) increase in 8-hour maximum O3 concentrations (five-day average 

lag) (Lewis et al. 2013, Figure 1C). 
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F.5.2 Tétreault et al. (2016)   

Tétreault et al. (2016) investigated the effects of long-term O3 exposure on asthma onset in 

children (aged zero-12 years) from Québec, Canada. The study followed participants from the 

Québec Integrated Chronic Disease Surveillance System open birth cohort between 1999 and 

2011. The authors defined new cases of asthma based on hospital discharge reports and 

physician diagnoses (two diagnoses within a two-year span). Monitor data (Canadian 

National Air Pollution Surveillance network) and land-use mixed effect models estimated 

warm season (June to August) O3 exposures. Authors assessed associations with asthma 

onset with both time of birth and time-varying exposure models and adjusted for year of 

birth, sex, and indices of social and material deprivation. Tétreault et al. (2016) used Cox 

proportional hazard models to observe associations between long-term O3 exposure and 

asthma onset in children.  

As the physiology and etiology of lung development in children is similar in children 6-17 

(Baena-Cagnani et al., 2007, Guerra et al., 2004, Ochs et al., 2004, Sparrow et al., 1991, Trivedi 

and Denton, 2019), we apply the 4-12 year age-stratified effect estimate from Tétreault et al. 

(2016) to children ages 4-17.  

Incidence, Asthma 

In a single-pollutant time-varying model, the coefficient and standard error were estimated 

from a warm-season hazard ratio of 1.07 (95% CI: 1.06-1.08) for a 3.26 ppb (interquartile 

range) increase in annual O3 concentrations (Tétreault et al. 2016, Table 5). 
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F.6 Sensitivity Analysis – General   

Table F-6 summarizes the ozone health impact functions considered by U.S. EPA to be 

sensitivity analyses. Below, we present a brief summary of each of the studies and any items 

that are unique to the study. 

Table F-6 Core Health Impact Functions for Ozone Sensitivity Analyses 

Effect Author Year Location Age Co-Poll Metric Beta Std Err Form Notes 

Mortality, All 
Cause 

Di et al. 2017 Nationwide 65-
99 

PM2.5 Annual 
(D8HourMax) 

0.001094 0.000050 Log-
linear 

All Cause, 
warm season 

Incidence, 
Asthma 

Garcia et al. 2019 12 Southern 
California 
communities 

9-
18 

 Annual 
(D8HourMax) 

0.016946 0.010941 Log-
linear 

All year 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-
99 

PM10 D1HourMax 0.000985 0.000667 Log-
linear 

Multi-
pollutant, lag 1, 
warm season 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-
99 

PM10 D8HourMax 0.000985 0.000667 Log-
linear 

Multi-
pollutant, lag 1, 
warm season, 
8-hour max 
from 1-hour 
max using 
adjustment 
factor of 1.13, 
resulting in 
effective beta 
of 0.001113. 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-
99 

 D1HourMax 0.000767 0.000304 Log-
linear 

Single-
pollutant, lag 1, 
warm season 

Mortality, 
Respiratory 

Katsouyanni 
et al. 

2009 90 U.S. Cities 0-
99 

 D8HourMax 0.000767 0.000304 Log-
linear 

Single-
pollutant, lag-
1, warm 
season, 8-hour 
max from 1-
hour max using 
adjustment 
factor of 1.13, 
resulting in 
effective beta 
of 0.000867. 

Mortality, All 
Cause 

Turner et al. 2016 Nationwide 30-
99 

PM2.5 Annual 
(D8HourMax) 

0.001980 0.000500 Log-
linear 

All Cause, 
warm season, 
multi-pollutant 

Mortality, 
Respiratory 

Turner et al. 2016 Nationwide 30-
99 

 Annual 
(D8HourMax) 

0.013103 0.001791 Log-
linear 

Single-
pollutant 

Mortality, 
Respiratory 

Turner et al. 2016 Nationwide 30-
99 

PM2.5 Annual 
(D8HourMax) 

0.011333 0.001823 Log-
linear 

Multi-pollutant 
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F.6.1 Di et al. (2017) 

Di et al. (2017) evaluated the relationship between long-term ozone exposure and all-cause 

mortality in nearly 61 million U.S. Medicare enrollees (over the age of 64) through 460 million 

person-years of follow-up and roughly 22 million observed deaths. This cohort comprised 

approximately 15% of the total U.S. population, included people living in rural areas, and is 

one of the largest cohort studies published to date. The authors modeled warm season ozone 

exposure across the contiguous U.S. using a hybrid methodology that included land use 

regression, satellite data, and monitor data, and resolved estimations to 1 x 1-kilometer 

areas. Di et al. (2017) used two-pollutant Cox proportional-hazards models with a generalized 

estimating equation. The authors controlled for demographic characteristics, Medicaid 

eligibility, and area-level covariates. 

All-Cause Mortality  

In a two-pollutant model, the coefficient and standard error for ozone are estimated from the 

hazard ratio (1.011) and 95% confidence interval of (1.010-1.012) associated with a change in 

annual mean ozone exposure of 10.0 ppb (Di et al., 2017, Table 2 Main Analysis).    
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F.6.2 Garcia et al. (2019) 

Garcia et al. (2019) examined the associations between long-term ozone exposure and 

asthma onset in children (aged nine-18 years) with no history of asthma in Southern 

California. The authors followed three waves of participants from the Children's Health Study 

for eight years between 1993 and 2014. Garcia et al. (2019) obtained health and demographic 

data from parents, guardians, or participants, who completed questionnaires annually. In 

order to calculate annual mean, community-level ozone exposure, the authors acquired daily 

eight-hour mean ozone concentrations through ambient air pollution monitors. Multi-level 

Poisson regression models with one-year lag showed no statistically significant associations 

between long-term ozone exposure and asthma onset in children. Models adjusted for 

demographic variables as well as factors pertaining to family medical history, environmental 

factors, and near-roadway pollution.  

Incidence, Asthma 

In a single-pollutant, all year model, the coefficient and standard error were estimated from 

an incidence rate ratio of 0.86 (95% CI: 0.71-1.04) for an 8.9 ppb decrease in eight-hour mean 

ozone concentrations (Garcia et al. 2019, Table 2). For consistency with the other HIFs, we 

convert this to a rate ratio for an increase in ozone, by taking the inverse of the reported 

incidence rate ratio, giving a rate ratio of 1.163 (95% CI: 0.962-1.408) for an 8.9 ppb increase in 

eight-hour mean ozone concentrations. 
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F.6.3 Katsouyanni et al. (2009)   

See full study description under Katsouyanni et al. (2009) in Appendix F, Section F.1.1. 

Short-term Mortality, Respiratory (Multi-Pollutant) 

In a multi-pollutant model, the coefficient and standard error are based on the summer-only 

penalized spline estimate of respiratory mortality of 0.99% (-0.33, 2.31%) per 10 ppb increase 

in O3 lagged by 1 day (Katsouyanni et al. 2009, Table 24: Lag 1; Penalized splines; Controlling 

for PM10).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 8-

hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) (Anderson 

and Bell 2010, Table 2). 

Short-term Mortality, Respiratory (Single-Pollutant) 

In a single-pollutant model, the coefficient and standard error are based on the summer-only 

penalized spline estimate of respiratory mortality of 0.77% (0.17, 1.37%) per 10 ppb increase 

in O3 lagged by 1 day (Katsouyanni et al. 2009, Table 24: Lag 1; Penalized splines; O3 Results).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 8-

hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) (Anderson 

and Bell 2010, Table 2). 
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F.6.4 Turner et al. (2016)   

See full study description under Turner et al. (2016) in Appendix F, Section F.1.2. 

Long-term Mortality, All Cause 

In a multi-pollutant model, the coefficient and standard error are based on the warm-season 

specific hazard ratio of 1.02 (1.01-1.03) per 10 ppb increase in seasonal average of daily 8-

hour maximum O3 concentrations (Turner et al. 2016, Table E9: HBM O3, multipollutant model 

data, fully adjusted).  

Long-term Mortality, Respiratory (Single-Pollutant) 

In a single-pollutant model, the coefficient and standard error are based on the warm-season 

specific hazard ratio of 1.14 (1.10-1.18) per 10 ppb increase in seasonal average of daily 8-

hour maximum O3 concentrations (Turner et al. 2016, Table E5: HBM O3, 1982-2004, fully 

adjusted plus ecological covariate).  

Long-term Mortality, Respiratory (Multi-Pollutant) 

In a multi-pollutant model, the coefficient and standard error are based on the warm-season 

specific hazard ratio of 1.12 (1.08-1.16) per 10 ppb increase in seasonal average of daily 8-

hour maximum O3 concentrations (Turner et al. 2016, Table E7: HBM O3, 1982-2004, 

multipollutant, fully adjusted). 
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F.7 Sensitivity Analysis – At-Risk Populations 

Table F-7 summarizes the ozone health impact functions considered by U.S. EPA to be 

sensitivity analyses that characterize risk experienced by certain subpopulations. Below, we 

present a brief summary of each of the studies and any items that are unique to the study. 

Table F-7 Core Health Impact Functions for Ozone Sensitivity Analyses of At-Risk 
Populations 

Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

HA, All 
Respiratory 

Cakmak et 
al. 

2006 10 
Canadian 
Cities 

0-
99 

 D24HourMean 0.002033 0.000580 Logistic Female 

HA, All 
Respiratory 

Cakmak et 
al. 

2006 10 
Canadian 
Cities 

0-
99 

 D8HourMax 0.002033 0.000580 Logistic Female, 8-
hour max 
from 24-hour 
mean using 
adjustment 
factor of 
0.654, 
resulting in 
effective beta 
of 0.001328. 

HA, All 
Respiratory 

Cakmak et 
al. 

2006 10 
Canadian 
Cities 

0-
99 

 D24HourMean 0.002530 0.000519 Logistic Male 

HA, All 
Respiratory 

Cakmak et 
al. 

2006 10 
Canadian 
Cities 

0-
99 

 D8HourMax 0.002530 0.000519 Logistic Male, 8-hour 
max from 24-
hour mean 
using 
adjustment 
factor of 
0.654, 
resulting in 
effective beta 
of 0.001653. 

Mortality, 
Respiratory 

Jerrett et al. 2009 Nationwide 
US, 96 MSAs 

30-
99 

 Annual 
(D1HourMax) 

0.003922 0.000972 Log-
linear Female 

Mortality, 
Respiratory 

Jerrett et al. 2009 Nationwide 
US, 96 MSAs 

30-
99 

 Annual 
(D8HourMax) 

0.003922 0.000972 Log-
linear 

Female, 8-
hour max 
from 1-hour 
max using 
adjustment 
factor of 1.13, 
resulting in 
effective beta 
of 0.004432. 

Mortality, 
Respiratory 

Jerrett et al. 2009 Nationwide 
US, 96 MSAs 

30-
99 

 Annual 
(D1HourMax) 

0.000995 0.001257 Log-
linear Male 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Mortality, 
Respiratory 

Jerrett et al. 2009 Nationwide 
US, 96 MSAs 

30-
99 

 Annual 
(D8HourMax) 

0.000995 0.001257 Log-
linear 

Male, 8-hour 
max from 1-
hour max 
using 
adjustment 
factor of 1.13, 
resulting in 
effective beta 
of 0.001124. 

Mortality, 
All Cause 

Katsouyanni 
et al. 

2009 Nationwide 
US, 90 cities 

0-
74 

 D1HourMax 0.000698 0.000213 Logistic Age <75 

Mortality, 
All Cause 

Katsouyanni 
et al. 

2009 Nationwide 
US, 90 cities 

0-
74 

 D8HourMax 0.000698 0.000213 Logistic Age <75, 8-
hour max 
from 1-hour 
max using 
adjustment 
factor of 1.13, 
resulting in 
effective beta 
of 0.000788. 

Mortality, 
All Cause 

Katsouyanni 
et al. 

2009 Nationwide 
US, 90 cities 

75-
99 

 D1HourMax 0.000618 0.000233 Logistic Age ≥75 

Mortality, 
All Cause 

Katsouyanni 
et al. 

2009 Nationwide 
US, 90 cities 

75-
99 

 D8HourMax 0.000618 0.000233 Logistic Age ≥75, 8-
hour max 
from 1-hour 
max using 
adjustment 
factor of 1.13, 
resulting in 
effective beta 
of 0.000698. 

HA, Lower 
Respiratory 
Infection 

Lin et al. 2005 Toronto, 
Canada 

0-
14 

 D1HourMax 0.007592 0.005232 Logistic 
Female 

HA, Lower 
Respiratory 
Infection 

Lin et al. 2005 Toronto, 
Canada 

0-
14 

 D8HourMax 0.007592 0.005232 Logistic Female, 8-
hour max 
from 1-hour 
max using 
adjustment 
factor of 1.14, 
resulting in 
effective beta 
of 0.008655. 

HA, Lower 
Respiratory 
Infection 

Lin et al. 2005 Toronto, 
Canada 

0-
14 

 D1HourMax 0.003530 0.004524 Logistic 
Male 

HA, Lower 
Respiratory 
Infection 

Lin et al. 2005 Toronto, 
Canada 

0-
14 

 D8HourMax 0.003530 0.004524 Logistic Male, 8-hour 
max from 1-
hour max 
using 
adjustment 
factor of 1.14, 
resulting in 
effective beta 
of 0.004025. 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Emergency 
Room 
Visits, 
Asthma 

Mar and 
Koenig 

2009 Seattle, 
Washington 

0-
17 

 D8HourMax 0.010436 0.004358 Log-
linear Age <18 

Emergency 
Room 
Visits, 
Asthma 

Mar and 
Koenig 

2009 Seattle, 
Washington 

18-
99 

 D8HourMax 0.003922 0.002688 Log-
linear Age ≥18 

Mortality, 
All Cause 

Medina-
Ramon & 
Schwartz 

2008 Nationwide 
US, 48 cities 

0-
64 

 D8HourMean -
0.000130 

0.000102 Logistic 
Age <65 

Mortality, 
All Cause 

Medina-
Ramon & 
Schwartz 

2008 Nationwide 
US, 48 cities 

65-
99 

 D8HourMean 0.000965 0.000235 Logistic 
Age ≥65 

Mortality, 
All Cause 

Medina-
Ramon & 
Schwartz 

2008 Nationwide 
US, 48 cities 

0-
99 

 D8HourMean 0.000936 0.00024 Logistic Female, Age 
0-99 

Mortality, 
All Cause 

Medina-
Ramon & 
Schwartz 

2008 Nationwide 
US, 48 cities 

0-
99 

 D8HourMean 0.000359 0.000038 Logistic Male, Age 0-
99 

Emergency 
Room 
Visits, 
Asthma 

Paulu and 
Smith 

2008 Maine 2-
14 

 D8HourMax 0.010436 0.005027 Logistic 

Age 2-14 

Emergency 
Room 
Visits, 
Asthma 

Paulu and 
Smith 

2008 Maine 15-
34 

 D8HourMax 0.014842 0.003524 Logistic 

Age 15-34 

Emergency 
Room 
Visits, 
Asthma 

Paulu and 
Smith 

2008 Maine 2-
99 

 D8HourMax 0.011333 0.002736 Logistic 
Female, Age 
2-99 

Emergency 
Room 
Visits, 
Asthma 

Paulu and 
Smith 

2008 Maine 2-
99 

 D8HourMax 0.010436 0.003222 Logistic 
Male, Age 2-
99 

Emergency 
Room 
Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

2-4  D8HourMax 0.003237 0.003342 Logistic Age 2-4 

Emergency 
Room 
Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

5-
14 

 D8HourMax 0.007279 0.002357 Logistic Age 5-14 

Emergency 
Room 
Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

15-
14 

 D8HourMax 0.005798 0.00179 Logistic Age 15-14 

Emergency 
Room 
Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

45-
64 

 D8HourMax 0.006296 0.003275 Logistic Age 45-64 
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Effect Author Year Location Age 
Co-
Poll Metric Beta Std Err Form Notes 

Emergency 
Room 
Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

65-
74 

 D8HourMax 0.007279 0.005544 Logistic Age 65-74 

Emergency 
Room 
Visits, 
Asthma 

Villeneuve 
et al. 

2007 Edmonton, 
Canada 

75-
99 

 D8HourMax -
0.000558 

0.006684 Logistic Age 75-99 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

0-
20 

 D8HourMean 0.00008 0.000252 Logistic Age 0-20 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

21-
30 

 D8HourMean 0.0001 0.000392 Logistic Age 21-30 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

31-
40 

 D8HourMean 0.00007 0.000229 Logistic Age 31-40 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

41-
50 

 D8HourMean 0.00008 0.000178 Logistic Age 41-50 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

51-
60 

 D8HourMean 0.000539 0.000178 Logistic Age 51-60 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

61-
70 

 D8HourMean 0.000379 0.000114 Logistic Age 61-70 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

71-
80 

 D8HourMean 0.000499 0.000089 Logistic Age 71-80 

Mortality, 
All Cause 

Zanobetti 
and 
Schwartz 

2008 Nationwide 
US, 48 cities 

81-
99 

 D8HourMean 0.00029 0.000079 Logistic Age 81-99 
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F.7.1 Cakmak et al. (2006)   

Cakmak et al. (2006) examined the relationship between daily average O3 concentrations and 

hospital admissions for respiratory causes (ICD-9 466, 480-486, 490, 491, 492, 493, 494, and 

496) among residents of 10 Canadian cities (Calgary, Edmonton, Halifax, London, Ottawa, 

Saint John, Toronto, Vancouver, Windsor, and Winnipeg). Data on 215,544 respiratory 

hospitalizations were obtained from the Canadian Institute for Health Information. Daily 24-

hour average O3 concentrations in all seasons were estimated using the average of data from 

all available monitors within each city. The authors ran city-specific multi-pollutant Poisson 

regression models by sex, education level, and income quartile using time lags of 0 to 5 days. 

Models controlled for day of the week, temperature, humidity, and barometric pressure. 

Pooled estimates across all 10 cities were calculated by using a random-effects model.  

Hospital Admissions, All Respiratory 

In single-pollutant models, the coefficient and standard error are estimated from a 

percentage increase of 3.6% (95% CI: 1.6-5.7%) for females and 4.5% (95% CI: 2.6-6.3%) for 

males for a 17.4 ppb increase in daily 24-hour average O3 concentrations (Cakmak et al. 2006, 

Table 3).  

The Health Impact Function was adjusted from the daily 24-hour mean metric to the daily 8-

hour max metric using a ratio of 1/1.53 = 0.65359 (inverse of the ratio of 8-hour max to 24-

hour mean ozone) (Anderson and Bell 2010, Table 2). 
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F.7.2 Jerrett et al. (2009)   

Jerrett et al. (2009) examined the potential contribution of long-term ozone exposure to the 

risk of death from cardiopulmonary causes and specifically to death from respiratory causes. 

Data from the study cohort of the American Cancer Society Cancer Prevention Study II were 

correlated with air-pollution data from 96 metropolitan statistical areas in the United States. 

Associations between warm season ozone concentrations and the risk of death were 

evaluated with the use of standard and multilevel Cox regression models. In single-pollutant 

models, increased concentrations of either PM2.5 or ozone were significantly associated with 

an increased risk of death from cardiopulmonary causes. In two-pollutant models, PM2.5 was 

associated with the risk of death from cardiovascular causes, whereas ozone was associated 

with the risk of death from respiratory causes. The estimated relative risk of death from 

respiratory causes that was associated with an increment in ozone concentration of 10 ppb 

was 1.040 (95% confidence interval, 1.010 to 1.067). The association of ozone with the risk of 

death from respiratory causes was insensitive to adjustment for confounders and to the type 

of statistical model used. The authors concluded that they were not able to detect an effect of 

ozone on the risk of death from cardiovascular causes when the concentration of PM2.5 was 

taken into account. But they did demonstrate a significant increase in the risk of death from 

respiratory causes in association with an increase in ozone concentration.  

Mortality, Respiratory (ICD-9 code 460-519) 

In single-pollutant models, the coefficient and standard error are estimated from a relative 

risk of 1.04 (95% CI: 1.03-1.07) for females and 1.01 (95% CI: 0.99-1.04) for males for a 10 ppb 

change in ambient ozone concentration measured from April to September during the years 

from 1977 to 2000 (Jerrett et al. 2009, Table 4).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 8-

hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) (Anderson 

and Bell 2010, Table 2).  



Appendix F – Core Ozone Health Impact Functions in BenMAP 
 

 
BenMAP User Manual v0.5  April 2024 

F-32 

F.7.3 Katsouyanni et al. (2009)   

See full study description under Katsouyanni et al. (2009) in Appendix F, Section F.1.1. 

Short-term Mortality, All Cause 

In single pollutant models, the coefficient and standard error are based on the summer-only 

penalized spline estimate of all-cause mortality of 0.70% (0.28, 1.12%) for ages <75 and 0.62% 

(0.16, 1.08%) for ages ≥75 per 10 ppb increase in O3 from distributed lag days (Katsouyanni et 

al. 2009, Table 24: Distributed Lags; Penalized splines; O3 Results).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 8-

hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) (Anderson 

and Bell 2010, Table 2). 
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F.7.4 Lin et al. (2005)   

Lin et al. (2005) examined the relationship between short term O3 exposures and hospital 

admissions for lower respiratory infections (ICD-9 464, 466, 480-487) in a case-crossover study 

among Toronto residents under the age of 15 between 1998 and 2001. Data on 6,782 

hospitalizations were obtained from the Discharge Abstract Database. Daily 1-hour maximum 

O3 concentrations in all seasons were obtained from seven monitoring stations in the 

National Air Pollution Surveillance system. The authors ran conditional logistic regression 

models controlling for temperature and weather conditions using 1- to 7-day average lags.  

Hospital Admissions, All Respiratory 

In multi-pollutant models adjusted for PM2.5 and PM10-2.5, the coefficient and standard error are 

estimated from an odds ratio of 1.18 (95% CI: 0.94-1.47) for females and 1.08 (95% CI: 0.89-

1.31) for males for a 21.8 ppb increase in daily 1-hour maximum O3 concentrations with a 4-

day average lag (Lin et al. 2005, Table 3 (Adjusted B)).  

The Health Impact Function was adjusted from the daily 1-hour max metric to the daily 8-

hour max metric using a ratio of 1.13 (ratio of 1-hour max to 8-hour max ozone) (Anderson 

and Bell 2010, Table 2). 
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F.7.5 Mar and Koenig (2009)   

Mar and Koenig (2009) evaluated the relationship between outdoor ozone in the summer and 

asthma aggravation. The authors used hospital data on daily asthma cases from 1998 to 2002 

in Seattle with local monitored PM2.5 and ozone concentrations to assess the association 

between asthma visits to the emergency department and air pollutants. They analyzed 1-

hour and 8-hour max ozone concentrations at two monitors in Greater Seattle. Asthma ED 

visits were analyzed at 0 through 5-day lags. The authors found that ozone exposure 

exacerbates asthma in people in the Seattle area, especially in children. Authors found that in 

adults during the warmer months between May and September, a 10 ppb increase in 8-hour 

maximum ozone concentration is associated with relative risk of asthma-related ED visits of 

1.08 (1.02, 1.14) with a 4-day lag. In children, during the warmer months, a 10 ppb increase in 

8-hour maximum ozone concentration is associated with relative risk of asthma-related ED 

visits of 1.11 (1.02, 1.21) with a 3-day lag. The difference in lag and relative risk between 

children and adults suggests that children are more immediately responsive to the adverse 

effects of ozone exposure.  

Emergency Room Visits, Asthma 

In single-pollutant models, the coefficient and standard error are estimated from a relative 

risk of 1.11 (95% CI: 1.02-1.21) for age <18 and 1.04 (95% CI: 0.99-1.10) for age ≥18 for a 10 ppb 

increase in daily 8-hour maximum summer ozone concentration with a 3-day average lag 

(Mar and Koenig, 2009, Table 5 and Table 6).  
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F.7.6 Medina-Ramon & Schwartz (2008)   

Medina-Ramon & Schwartz (2008) evaluated short-term O3 exposure and all-cause mortality 

among residents of all ages in 48 U.S. cities from 1989-2000 using a case-only approach. Data 

on 2,729,640 non-accidental deaths was obtained from the National Center for Health 

Statistics. The authors estimated 8-hour daily mean ozone concentrations (warm season, May 

to September) for each city using daily ozone levels reported by the U.S. EPA Aerometric 

Retrieval System. The authors ran city-specific conditional logistic regressions controlling for 

seasonality, temperature, and day of the week and pooled the results across cities. Results 

were presented by socio-demographic characteristics and chronic conditions. 

Mortality, All Cause 

The O3-mortality risk estimates for at-risk subpopulations reported in Medina-Ramon & 

Schwartz (2008) required additional modification in order to use those results to develop 

health impact functions.  The authors presented excess risk estimates for each subpopulation 

as the additional percent change in mortality for persons who have the condition, compared 

to persons without the condition. For our populations of interest, these subgroups were 

persons age 65 or older compared to those younger than 65, and females relative to males. 

However, they did not report the risk estimate for these comparison groups, so in order to 

estimate the total excess risk for each exposed at-risk group, we needed to first back-

calculate the excess risk for the comparison group without the factor of interest. We 

accomplished this by assuming that the authors’ overall reported excess risk for the full 

sample of 0.65% (95% confidence interval = 0.38% to 0.93%) could be expressed as a 

weighted average of the unreported excess risk (“x”) and the full excess risk for the at-risk 

group, which would be expressed as the sum of x and the reported excess risk from Medina-

Ramon & Schwartz (2008) Table 2, where the weights are calculated using the total and at-risk 

group sample sizes in Table 1 of that paper. For example, to calculate the total excess risks for 

the females in the sample, we used the following equation: 
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Equation F-5 

ERTotal =  
ERMale(PopMale) + ER𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(PopFemale)

PopTotal
  

where ERTotal is the full sample excess risk of 0.65%; ERFemale is the excess risk of ozone 

exposures for females; ERMale is the excess risk of ozone exposures for males; PopTotal is the 

total sample population; and PopFemale and PopMale are the size of the female and male subsets 

of the sample population, respectively. We also know from Table 2 of that paper that: 

Equation F-6 

ERFemale =  ERMale + 0.58 % 

Substituting and using the available information from Medina-Ramon & Schwartz (2008) 

Tables 1 and 2, we can solve for ERMale and then ERFemale:  

Equation F-7 

0.65% =  
ERMale(1,365,937) + (0.58% + ERMale)(1,363,703)

2,729,640
 

ERMale = 0.36 % 

and 

ERFemale =  0.36% + 0.58% = 0.94% 

We then used the full excess risk value for the female subpopulation to derive a health impact 

function for ozone-related mortality for females. Final calculated excess risks are 0.94% (0.47-

1.42%) for females aged 0-99; 0.36% (0.29-0.44%) for males aged 0-99, -0.13% (-0.33-0.07%) 

for both sexes aged 0-64, and 0.97% (0.51-1.44%) for both sexes aged 65-99. 
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F.7.7 Paulu and Smith (2008)   

Paulu and Smith (2008) conducted a case-crossover analysis to evaluate the relationship 

between daily ozone concentrations and emergency room visits for asthma (ICD-9 493) 

among Maine residents aged 2 and older from 2000 to 2003. Data on 8,020 asthma-related ER 

visits was obtained from the Maine Health Data Organization. Daily 8-hour maximum O3 

concentrations were computed from two monitor sites situated in or near Portland, ME and 

data was obtained from the Maine Department of Environmental Protection, Bureau of Air 

Quality. The authors defined the warm season as May 22-September 10 (2000) and May 23-

September 11 (2001-2003). The authors ran conditional logistic regression models stratified 

by sex and age groups (2–14, 15–34, 35–64, and ≥65 years) controlling for temperature, 

humidity, and day after major holidays as well as PM2.5 in co-pollutant models. Paulu and 

Smith (2008) found that excess risk was concentrated among females aged 15 to 34 and 

males younger than 15. 

Emergency Room Visits, Asthma 

In single-pollutant models for both sexes, the coefficient and standard error are estimated 

from an excess risk of 11% (1-23%) for ages 2-14 and 16% (8-24%) for ages 15-34 for a 10 ppb 

increase in average daily 8-hour maximum ozone (lags 0-3 days) (Paulu and Smith, 2008, 

Figure 1 text). 

In single-pollutant models for ages 2 and above, the coefficient and standard error are 

estimated from an excess risk of 12% (6-18%) for females and 11% (4-18%) for males for a 10 

ppb increase in average daily 8-hour maximum ozone (lags 0-3 days) (Paulu and Smith, 2008, 

Figure 1 text). 
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F.7.8 Villeneuve et al. (2007)   

Villeneuve et al. (2007) evaluated the relationship between short-term ozone exposure and 

emergency room visits for asthma (ICD-9 493) among residents of Edmonton, Canada aged 2 

and above from 1992 to 2002 in a case-crossover study. Data on 57,912 asthma-related ER 

visits was provided by Capital Health. Daily 8-hour maximum O3 concentrations were 

obtained from automated fixed-site monitoring stations maintained by Environment Canada 

as part of the National Air Pollution Surveillance Network. The monitors measured both warm 

season (April-September) and cold season (October-March) ozone concentrations. The 

authors ran conditional logistic regression models controlling for temperature, humidity, 

influenza, and aeroallergens. Villeneuve et al. (2007) found associations between ozone and 

asthma emergency room visits in the warm season and observed the strongest effects in 

young children. 

Emergency Room Visits, Asthma 

In single-pollutant models, the coefficient and standard error are estimated from odds ratios 

of 1.06 (0.94-1.19) for ages 2-4; 1.14 (1.05-1.24) for ages 5-14; 1.11 (1.04-1.18) for ages 15-44; 

1.12 (1.00-1.26) for ages 45-64; 1.14 (0.94-1.39) for ages 65-74; and 0.99 (0.78-1.25) for ages 75-

99 for a 18 ppb increase in average daily 8-hour maximum warm season ozone (5-day average 

lag) (Villeneuve et al., 2007, Tables 4, 5, 6, 7, 8, 9).  
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F.7.9 Zanobetti and Schwartz (2008b)   

Zanobetti and Schwartz (2008b) evaluated the relationship between short-term ozone 

exposure and all-cause mortality across 48 U.S. cities (1989-2000) for all ages in a case-

crossover study. Data on 6,951,395 total deaths was provided by the National Center for 

Health Statistics. Daily 8-hour mean O3 concentrations were obtained from the U.S. EPA Air 

Quality System Technology Transfer Network for all seasons. The authors ran conditional 

logistic regression models by season, month, and age group (0-20, 21-30, 31-40, 41-50, 51-60, 

61-70, 71-80, 80+) controlling for temperature, dew point, and day of the week.  

Mortality, All Cause 

In single-pollutant models, the coefficient and standard error are estimated from an excess 

risk of 0.08% (-0.42-0.57%) for ages 0-20; 0.1% (-0.67-0.87%) for ages 21-30; 0.07% (-0.38-

0.52%) for ages 31-40; 0.08% (-0.27-0.43%) for ages 41-50; 0.54% (0.19-0.89%) for ages 51-60; 

0.38% (0.16-0.61%) for ages 61-70; 0.5% (0.32-0.67%) for ages 71-80; and 0.29% (0.13-0.44%) 

for ages 81-99 for a 10 ppb increase in average daily 8-hour mean all season ozone (Zanobetti 

and Schwartz 2008b, Table 2). 

 



Appendix G – Additional Health Impact Functions in BenMAP 
 

 
BenMAP User Manual v0.5  April 2024 

G-1 

Appendix G. Additional Health Impact 

Functions in BenMAP 

In this Appendix, we present additional health impact functions for estimating PM2.5 and 

Ozone-related adverse health effects. Unlike Appendices E and F, these functions are not 

currently used by the U.S. EPA in regulatory impact analyses. PLACEHOLDER: Information 

on additional functions will be included here as they are added to the tool by U.S. EPA. 
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Appendix H. Core Health Valuation 

Functions in BenMAP 

This appendix presents the core unit values that are available in BenMAP for each of the 

health effects included in the current suite of health impact functions. Specifically, this 

appendix includes the values currently used by U.S. EPA in regulatory impact analyses.  

Wherever possible, we present a distribution of the unit value, characterizing the uncertainty 

surrounding any point estimate. The mean of the distribution is taken as the point estimate of 

the unit value, and the distribution itself is used to characterize the uncertainty surrounding 

the unit value, which feeds into the uncertainty surrounding the monetary benefits 

associated with reducing the incidence of the health effect. Below we give detailed 

descriptions of the derivations of unit values and their distributions, as well as tables listing 

the unit values and their distributions, available for each health effect. The definitions of the 

distributions and their parameters are given in Table H-1. 

Table H-1 Unit Value Uncertainty Distributions and Their Parameters 

Distribution* Parameter 1 (P1) Parameter 2 (P2) 

Normal Standard deviation – 

Triangular Minimum value Maximum value 

Lognormal ** 
Mean of corresponding 
normal distribution 

Standard deviation of 
corresponding normal 
distribution 

Uniform Minimum value Maximum value 

Weibull *** α β 
*In all cases, BenMAP calculates the mean of the distribution, which is used as the “point estimate” of the unit value. 

** If Y is a normal random variable, and Y = logeX, then X is lognormally distributed. Equivalently, X is lognormally distributed 

if X = eY, where Y is normally distributed. 

*** The Weibull distribution has the following probability density function: 
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Equation H-1 

 

This appendix also presents U.S. EPA methods for developing income growth adjustment 

factors that allow you to adjust the WTP estimates to account for the growth in income over 

time. 

H.1 Mortality 

The economics literature concerning the appropriate method for valuing reductions in 

premature mortality risk is still developing. The adoption of a value for the projected 

reduction in the risk of premature mortality is the subject of continuing discussion within the 

economics and public policy analysis communities. Issues such as the appropriate discount 

rate and whether there are factors, such as age or the quality of life, that should be taken into 

consideration when estimating the value of avoided premature mortality are still under 

discussion. BenMAP currently offers a variety of options reflecting the uncertainty 

surrounding the unit value for premature mortality. 

H.1.1 Value of a Statistical Life Based on 26 Studies 

The current undiscounted VSL used by U.S. EPA is $8.7 million (2015$). This estimate is the 

mean of a distribution fitted to 26 “value of statistical life” (VSL) estimates that appear in the 

economics literature and that have been identified in the Section 812 Reports to Congress as 

“applicable to policy analysis.” This represents an intermediate value from a variety of 

estimates, and it is a value U.S. EPA has frequently used in Regulatory Impact Analyses (RIAs) 

as well as in the Section 812 Retrospective and Prospective Analyses of the Clean Air Act. 

When applying the SAB segmented cessation lag as described in Figure 4-1, the present value 

of avoided mortality risk at the time of the exposure change is $8.1 million (2015$) using a 2% 
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discount rate, $7.9 million (2015$) using a 3% discount rate and $7.1 million (2015$) using a 

7% discount rate (U.S. EPA, 2014). 

The VSL approach mirrors that of Viscusi (1992), and uses the same criteria as Viscusi in his 

review of value-of-life studies. The $8.7 million estimate is consistent with Viscusi’s 

conclusion (updated to 2015$) that “most of the reasonable estimates of the value of life are 

clustered in the $5.2 to $12.3 million range.” Five of the 26 studies are contingent valuation 

(CV) studies, which directly solicit WTP information from subjects; the rest are wage-risk 

studies, which base WTP estimates on estimates of the additional compensation demanded 

in the labor market for riskier jobs. Because this VSL-based unit value does not distinguish 

among people based on the age at their death or the quality of their lives, it can be applied to 

all premature deaths. Table H-2 presents the unit values for the 26 value-of-life studies, the 

2%, 3%, and 7% discounted unit values represent the core U.S. EPA values for this effect while 

the undiscounted rate represents an additional valuation function. 
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Table H-2 Core Unit Values for VSL based on 26-value-of-life studies 

Basis for Estimate * 
Age Range at 
Death 

Unit Value 
(VSL) 
(2015$) 

Distribution 
of Unit Value 

Parameters of 
Distribution 

Min Max P1 P2 

VSL, based on 26 value-of-life 
studies 0 99 8,705,114 Weibull 9,648,168 1.509588 

VSL, based on 26 value-of-life 
studies, 2% discount rate 

0 99 8,132,666 Weibull 9,013,705 1.410317 

VSL, based on 26 value-of-life 
studies, 3% discount rate 0 99 7,887,356 Weibull 8,741,819 1.367777 

VSL, based on 26 value-of-life 
studies, 7% discount rate 0 99 7,103,778 Weibull 7,873,354 1.231894 

* The original value of a statistical life was calculated in 1990$.  We have used a factor of 1.8134, based on the All-Items CPI-U. 

When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default value selected for 

mortality health effects is:  VSL, based on 26 value-of-life studies, 2% discount rate. 

H.2 Hospital Admissions & Emergency Room Visits 

This section presents the core values for avoided hospital admissions, as well as avoided 

emergency room visits. We assume that hospital admissions due to acute exposure to air 

pollution pass through the emergency room. However, the value of hospital admissions that 

we have calculated here does not account for the cost incurred in the emergency room visit.  

H.2.1 Hospital Admissions  

As suggested above, the total value to society of an individual’s avoidance of a hospital 

admission can be thought of as having two components: (1) the cost of illness (COI) to 

society, including the total medical costs plus the value of the lost productivity, as well as (2) 

the WTP of the individual, as well as that of others, to avoid the pain and suffering resulting 

from the illness.  
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In the absence of estimates of social WTP to avoid hospital admissions for specific illnesses 

(components 1 plus 2 above), estimates of total COI (component 1) are available for use in 

BenMAP as conservative (lower bound) estimates. Because these estimates do not include 

the value of avoiding the pain and suffering resulting from the illness (component 2), they are 

biased downward. Some analyses adjust COI estimates upward by multiplying by an estimate 

of the ratio of WTP to COI, to better approximate total WTP. Other analyses have avoided 

making this adjustment because of the possibility of over-adjusting -- that is, possibly 

replacing a known downward bias with an upward bias. Based on Science Advisory Board 

(SAB) advice, the COI values currently available for use in BenMAP are not adjusted.  

Unit values are based on ICD-code-specific estimated hospital charges and opportunity cost 

of time spent in the hospital (based on the average length of a hospital stay for the illness). 

The opportunity cost of a day spent in the hospital is estimated as the value of the lost daily 

wage, regardless of whether or not the individual is in the workforce.  

For all hospital admissions effects available in BenMAP, estimates of hospital charges and 

lengths of hospital stays were based on discharge statistics provided by the Agency for 

Healthcare Research and Quality’s Healthcare Utilization Project National Inpatient Sample 

(NIS) database (2016). The NIS is the largest inpatient care database in the United States, and 

it is the only national hospital database containing charge information on all patients. It 

contains data from a very large nationally representative sample of about eight million 

hospital discharges, and therefore provides the best estimates of mean hospital charges and 

mean lengths of stay available, with negligible standard errors. The sampling frame for the 

2016 NIS is a sample of hospitals that comprises approximately 90 percent of all hospital 

discharges in the United States. Since the NIS is based on discharge samples, the discharge-

level weight was used to weight discharges in order to produce national estimates. The 

principle diagnoses were used to define the health effects.  
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Since most pollution-related hospital admissions are likely unscheduled, the unit values of 

avoided hospital admissions used in BenMAP are based solely on unscheduled 

hospitalizations. The total COI for an ICD-code-specific hospital stay lasting n days is 

estimated as the mean hospital charge plus n times the daily lost wage.  

County-specific mean annual income divided by (52*5) was used to estimate county-specific 

mean daily wage. The data source for mean annual income is the 2021 American Community 

Survey (ACS). ACS provided data for mean annual income for all individuals over 16 years old 

in all U.S. counties. We apply county-specific employment rates from the 2021 ACS to the 

mean wage data to estimate the average economic cost of a lost day or year for non-workers 

and for workers. For non-workers, the daily lost wage is the ACS mean daily wage net of a 

seven percent income tax rate, which is the percentage difference in median post-tax income 

and median income from U.S. Census Bureau (2021). For workers, the daily lost wage is the 

ACS mean daily wage scaled by a multiplier that accounts for mean county-level fringe 

benefits and overhead. We calculate this value using county-specific fringe benefits estimates 

from the U.S. Bureau of Labor Statistics’ 2023 National Compensation Survey and a national 

overhead coefficient of 1.2 from U.S. EPA’s National Center for Environmental Economics 

(NCEE), as described in U.S. EPA (2023). Because wage data used in BenMAP are county-

specific, the unit value for a hospital admission varies from one county to another.  

Although the data for hospital charges are from year 2016, the default hospital admission unit 

values in BenMAP are in year 2015 dollars to be consistent with the unit values of other health 

effects in BenMAP. This was done by inflating the medical costs (2016 dollars) to 2015 dollars 

using BenMAP’s medical inflation index.  

The hospital admission outcomes that the U.S. EPA uses in its regulatory analyses are given in 

Table H-3. Although unit values available for use in BenMAP are county-specific, the national 

median daily wage was used to calculate opportunity costs and total costs. 
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Table H-3 Core Unit Values Available for Hospital Admissions 

Health Effect ICD Codes 

Age Range Mean 
Hospital 
Charge  
(2015 $) 

Mean 
Length 
of Stay 
(days) 

Total Cost of 
Illness (Unit 
Value in 
2015$)* 

Min Max 

HA, All Cardiac Outcomes 390-459 0 99 $16,045 5.05 $16,918 

HA, All Respiratory 460-519 0 18 $9,075 3.49 $9,678 

HA, All Respiratory 460-519 65 99 $35,402 6.07 $36,451 

HA, Alzheimer’s Disease 331.0 65 99 $10,696 7.95 $12,070 

HA, Cardio-, Cerebro- and 
Peripheral Vascular Disease 

410- 414, 429, 
426- 427, 428, 
430-438, 440-449 

65 99 $14,665 4.82 $15,498 

HA, Respiratory-1 491, 492, 493, 
496 

0 99 $7,676 3.86 $8,343 

HA, Respiratory-2 464-466, 480-
487, 490-492, 493 

65 99 $9,003 4.66 $9,808 

HA, Parkinson’s Disease 332 18 99 $12,190 3.83 $12,852 
* The opportunity cost of a day spent in the hospital was estimated, for the above exhibit, at the median daily wage of all 
workers, regardless of age. The median daily wage was calculated by dividing the median weekly wage ($864 in 2015$) by 5. 
The median weekly wages for 2015 were obtained from the U.S. Census Bureau’s 2015 American Community Survey, 
“Selected Economic Characteristics: 2015 American Community Survey 1-Year Estimates.” 

When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default values selected for 

hospital admissions are the valuation functions presented in Table H-3. 

For two hospital admission effects, Alzheimer’s and Parkinson’s Disease, we calculated the 

lifetime COI in addition to calculating the costs associated with the initial hospitalization.  

Valuation sources of Alzheimer’s disease lifetime medical costs were available from the 

Alzheimer's Association (2020) report and Jutkowitz et al. (2017). Using Alzheimer's 

Association (2020), we first developed an estimate of incremental annual medical expenses 

for Medicare beneficiaries living with Alzheimer’s Disease. Then, using the estimated life 

expectancy duration of 5 years from Jutkowitz et al. (2017), we estimated total discounted 

present values for a five-year stream of costs using 2, 3, and 7 percent discount rates (Table H-

4). We note that the median age of Alzheimer’s disease onset is after the age of 65. As such, we 
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exclude any potential lost wages given the low rate of labor force participation in this age 

group. Lifetime medical costs, excluding initial hospitalization, are estimated at $159,934 

using a 2% discount rate, $156,920 using a 3% discount rate, and $145,946 using a 7% 

discount rate in 2015. 

Table H-4 Alzheimer’s Disease Valuation (2015$)  

Year  2% Discount Rate 3% Discount Rate  7% Discount Rate  

0  $33,266 $33,266  $33,266  

1  $32,614 $32,297  $31,090  

2  $31,974 $31,357  $29,056  

3  $31,347 $30,443  $27,155  

4  $30,733 $29,557  $25,379  

Total Lifetime Costs  $159,934 $156,920  $145,946  

 

Estimates of lifetime costs for Parkinson’s Disease were provided by Yang et al. (2020), 

including direct, indirect, and non-medical costs. Using Yang et al. (2020), we first developed 

an annual estimate of excess costs associated with living with Parkinson’s Disease. Then, 

using the estimated life expectancy duration of 14.6 years from De Pablo-Fernandez et al., 

2017, we calculated the present value of lifetime costs over this period using 2, 3, and 7 

percent discount rates (Table H-5). Lifetime medical costs are estimated at $571,886 using a 

2% discount rate,  $537,409 using a 3% discount rate, and $428,398 using a 7% discount rate 

in 2015$. 
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Table H-5 Lifetime Parkinson’s Disease Valuation Estimate Calculation 

Year  2% Discount Rate 3% Discount Rate  7% Discount Rate  

0  $44,718 $44,718 $44,718 

1  $43,841 $43,416 $41,793 

2  $42,982 $42,151 $39,059 

3  $42,139 $40,924 $36,503 

4  $41,313 $39,732 $34,115 

5  $40,502 $38,574 $31,883 

6  $39,708 $37,451 $29,798 

7  $38,930 $36,360 $27,848 

8  $38,166 $35,301 $26,026 

9  $37,418 $34,273 $24,324 

10  $36,684 $33,275 $22,732 

11  $35,965 $32,305 $21,245 

12  $35,260 $31,364 $19,855 

13  $34,568 $30,451 $18,556 

13.6  $19,671 $17,117 $9,942 

Total Lifetime Costs (14.6 yr 
survival)  

$571,886 $537,409 $428,398 

 

H.2.2 Emergency Room Visits 

As with hospital admissions, to value emergency room visits we develop primary COI 

estimates using data from the Healthcare Cost and Utilization Project (HCUP). The 2016 

Nationwide Emergency Department Sample (NEDS) provides recent, nationally 

representative information on medical treatment in emergency departments. In the case of 

emergency department visits, valuation estimates include only the medical costs. 

The NEDS dataset includes discharge-level observations. That is, each data point represents 

one individual being discharged from the emergency department (NEDS). Because 

individuals are treated in these settings for a variety of reasons, we use medical billing codes 
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to extract observations related to each health effect. The epidemiological studies described 

in Appendix E, F and G provide ICD-9 codes for each illness; however, recent HCUP datasets 

(including NEDS) use ICD-10 codes. Thus, we first crosswalk the relevant ICD-9 codes to 

associated ICD-10 codes using a mapping provided by the U.S. Centers for Disease Control. 

We then identify all discharges in the HCUP datasets with ICD-10 codes that match to a 

study’s ICD-9 code(s). Because HCUP datasets often include multiple ICD-10 codes for each 

discharge, we focus on the principal diagnosis (i.e., the first-listed ICD-10 code).  

In the NIS dataset, we convert total charges (i.e., the amount billed to patients, employers, or 

insurance providers) into estimates of total costs (i.e., the final reimbursements for medical 

treatment). Unadjusted charges are not suitable for use in regulatory analysis because posted 

prices generally do not reflect actual medical costs due, in part, to negotiation between 

medical providers and payers (e.g., insurance companies). We assume that adjusted charges 

reflect the actual revenue the hospital receives and thus the actual cost of providing care. 

This conversion is completed using hospital-specific cost-to-charge (CCR) ratios provided 

with NIS. Because CCRs are not available for NEDS, we apply average CCRs for each health 

effect in NIS to the same set of ICD-10 codes in NEDS.  

For each health effect, mean estimates are calculated using estimation commands for survey 

data to account for the sampling design and sample discharge weights of the HCUP data. This 

results in estimates of mean costs and a 95% confidence interval, which represents 

uncertainty in our valuation estimates of medical costs. The resulting estimates are 

presented in Table H-6.  
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Table H-6 Core Unit Values Available for Emergency Department Visits 

Health Effect ICD Codes 
Age Range Mean Unit Value 

(2015 $) Min Max 

ER visits, All Cardiac Outcomes 390-459 0 99 $1,161 

ER visits, respiratory 
491-493, 460-466, 
477, 480-486, 496, 
786.07, 786.09 

0 99 $875 

 

When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default values selected for 

emergency department visits are the valuation functions presented in Table H-6. 

H.2.3 Emergency Room Visits for Asthma  

Two unit values are currently available for use in BenMAP for asthma emergency room (ER) 

visits. One is $533.69, from Smith et al., 1997, who reported that there were approximately 1.2 

million asthma-related ER visits made in 1987, at a total cost of $186.5 million, in 1987$. The 

average cost per visit was therefore $155 in 1987$, or $533.69 in 2015$ (using the CPI for 

medical care to adjust to 2015$). The uncertainty surrounding this estimate, based on the 

uncertainty surrounding the number of ER visits and the total cost of all visits reported by 

Smith et al. is characterized by a triangular distribution centered at $533.69, on the interval 

[$395.14, $738.19].  

A second unit value is $446.52 from Stanford et al. (1999). This study considered asthmatics in 

1996-1997, in comparison to the Smith et al. (1997) study, which used 1987 National Medical 

Expenditure Survey (NMES) data). In comparing their study, the authors note that the 1987 

NMES, used by Smith et al., “may not reflect changes in treatment patterns during the 1990s.” 

In addition, its costs are the costs to the hospital (or ER) for treating asthma rather than 

charges or payments by the patient and/or third party payer. Costs to the ER are probably a 
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better measure of the value of the medical resources used up on an asthma ER visit (see 

above for a discussion of costs versus charges).  

The unit values and the corresponding distributions available in BenMAP for asthma-related 

ER visits are summarized in Table H-7. 

Table H-7 Core Unit Values Available for Asthma-Related ER Visits 

Basis for Estimate 
Age Range Unit Value 

(2015$) 

Distribution 
of Unit 
Value 

Parameters of 
Distribution 

Min Max P1 P2 

COI: Smith et al. (1997) 0 99 $534 Triangular $395 $738 

COI: Standford et al. (1999) 0 99 $447 Normal 8.95 -- 

 

When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default values selected for 

asthma-related ER visits are both valuation functions presented in Table H-7. 

H.2.3 Emergency Hospital Admissions for All Respiratory 

For HIFs based on studies that specifically assess the impact of pollutants on emergency 

hospital admissions (EHAs), we develop primary COI estimates based on a combination of 

hospitalization and emergency department visit costs using data from the Healthcare Cost 

and Utilization Project (HCUP).  Within HCUP, we rely on both the 2016 Nationwide 

Emergency Department Sample (NEDS), and the 2016 Agency for Healthcare Research and 

Quality’s Healthcare Utilization Project National Inpatient Sample (NIS) database for cost 

data. NEDs provides recent, nationally representative information on medical treatment in 

emergency departments, while NIS provides national hospital inpatient care data including 

charge information on all patients. Valuation estimates are based on the sum of total medical 
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costs incurred in the emergency department and during the subsequent inpatient hospital 

stay plus the value of the lost productivity for time in hospital. 

The NEDS and NIS datasets index cost data by medical billing codes. The principle diagnoses 

were used to define the health effects, see Section H.2.2 for additional details on health 

effect definition.  

In the NIS dataset, we convert total charges (i.e., the amount billed to patients, employers, or 

insurance providers) into estimates of total costs (i.e., the final reimbursements for medical 

treatment) using hospital-specific cost-to-charge (CCR) ratios provided with NIS . Unadjusted 

charges are not suitable for use in regulatory analysis because posted prices generally do not 

reflect actual medical costs due, in part, to negotiation between medical providers and 

payers (e.g., insurance companies). We assume that adjusted charges reflect the actual 

revenue the hospital receives and thus the actual cost of providing care. Because CCRs are 

not available for NEDS, we apply average CCRs for each health effect in NIS to the same set of 

ICD-10 codes in NEDS.  

For EHAs, mean cost estimates are calculated for both hospitalizations originating in the ER, 

via NIS data, and emergency department visits resulting in inpatient stays, via NEDS data, 

using estimation commands for survey data to account for the sampling design and sample 

discharge weights of the HCUP data. This results in estimates of mean costs and average 

length of hospital stay along with 95% confidence intervals, which represents uncertainty in 

our valuation estimates of medical costs and lost wages. The total COI for an emergency 

hospital stay lasting n days is estimated as the mean total ED and hospital charge plus n 

times the daily lost wage. Opportunity cost of a day spent in the hospital is estimated as the 

value of the lost daily wage, regardless of whether or not the individual is in the workforce. 

Lost daily wages are described in more detail in Section H.2.1. 
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The resulting EHA estimates for all respiratory illnesses are presented in Table H-8. Although 

unit values available for use in BenMAP are county-specific, the national median daily wage 

was used to calculate opportunity costs and total costs. 

Table H-8 Core Unit Values Available for Respiratory-related EHAs 

Health Effect ICD Codes 

Age Range Mean 
Hospital 
Charge    
(2015 $) 

Mean 
Length 
of Stay 
(days) 

Total Cost of 
Illness (Unit 
Value in 
2015$)* 

 
Min Max 

EHA, All Respiratory 460-519 65 99 $11,111 5.09 $11,990 

 

When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default value selected for 

Respiratory-related EHAs is presented in Table H-8. 

H.3 Other Health Effect Occurrence  

Monetary valuation estimates for health effect occurrences other than hospital admissions or 

emergency department visits are described below, listed in alphabetical order.  

H.3.1 Lung Cancer  

The unit value for non-fatal lung cancer incidence is derived from the direct medical costs of 

lung cancer treatment estimated by Kaye et al. (2018). Lost earnings are assumed to be 

negligible because of the low labor force participation rate among the age groups at highest 

risk of developing lung cancer (average age of diagnosis is approximately 70 years). Lung 

cancer treatment costs depend to a large extent on the phase of care, with costs in the initial 

year of treatment ($17,422 for males) far exceeding the continuing costs of treatment in 

subsequent years ($3,269 for males). We calculated costs over a five-year span, beginning 
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with the initial onset which occurs with a delay after exposure.  The initial year’s treatment 

cost is summed with four years of continuing annual costs discounted by 2%, 3%, and 7%.   

Furthermore, Kaye et al. (2018) provides separate treatment cost estimates for men and 

women. The distribution of new lung cancer cases by sex in the United States from Siegel et 

al. (2019) is approximately 51% male and 49% female. This distribution of new lung cancer 

cases was used to weight the sex-specific cost estimates from Kaye et al. (2018) to obtain a 

combined five-year cost estimate for both sexes. In order to adjust the cost estimate to 2015$ 

using a medical cost index, we assume that costs presented by Kaye et al. (2018) are in 2010$ 

as an approximate midpoint of the data years 2007-2012. Altogether, the cost of non-fatal 

lung cancer incidence over a five-year period is estimated to be $34,155 using a 2% discount 

rate, $33,809 using a 3% discount rate, and $32,548 using a 7% discount rate (Table H-9).   

Table H-9 Core Unit Values Available for Non-Fatal Lung Cancer 

Health Effect Basis for Estimate 
Age Range* Unit Value 

(2015$) Min Max 

Lung Cancer 

COI: 5 yrs med, 2% DR, 
Kaye (2018) 30 99 $34,155 

COI: 5 yrs med, 3% DR, 
Kaye (2018) 

30 99 $33,809 

COI: 5 yrs med, 7% DR, 
Kaye (2018) 30 99 $32,548 

*Note, the default valuation function for Non-Fatal Lung Cancer is a series of functions stratified by age into the following 
bins: 30-34, 35-44, 45-54, 55-64, 65-74, 75-84, and 85-99. 

 

When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default value selected for 

non-fatal lung cancer is: COI: 5 yrs med, 2% DR, Kaye (2018). 

For an outcome such as lung cancer, there is an expected time lag between changes in 

pollutant exposure in a given year and the total realization of health effect benefits, 

commonly referred to in regulatory analyses as the “cessation lag.” The time between 
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exposure and diagnosis can be quite long, on the order of years to decades, to realize the full 

benefits of the air quality improvements. This latency period is important in order to properly 

discount the economic value of these health benefits.   

To estimate the latency period, we performed a literature search using the keywords “non-

fatal lung cancer,” “lung cancer,” “PM2.5,” “latency,” and “incidence.” Five papers that 

estimate the risk of lung cancer incidence from PM2.5 exposure using a latency period were 

identified. The latency period length and country of the identified papers are summarized in 

Table H-10. Based on estimates of lung cancer latency from the literature, 10 years was the 

most common latency period estimate found in the literature (i.e., the mode).    

Table H-10 Latency Periods Used in Lung Cancer Risk Assessment Papers  

Study Latency Period (years) Location 

Gogna et al., 2019  5  Canada  

Bai et al., 2020  4; 10  Canada  

Kulhanova et al., 2018  10  France  

Coleman et al., 2020  10; 15  US  

Harrison et al., 2004  20  US  

 

To account for the latency period between air pollution reductions and avoided lung cancer 

diagnoses in our economic valuation estimates, we developed an age-at-diagnosis cessation 

lag distribution method based on an approach previously used to estimate avoided cases of 

kidney cancer in analyses of water quality rules (U.S. EPA, 2017). The method uses lung and 

bronchus cancer diagnosis age-distribution from the Surveillance, Epidemiology, and End 

Results Program (SEER). For this model, we assumed that the case reduction distribution 

would follow the age-pattern of cancer diagnosis between the age at which the exposure 

change occurs and 99 years. Table H-11 shows an example case reduction distribution 

calculation for an exposure change experienced at 55. SEER estimates 92.2% of lung and 

bronchus cancer cases occur in individuals 55 years and older. Dividing the percentages in the 

remaining age bins by 92.2% (the percent of lung and bronchus cancer diagnoses between 
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the age of exposure change and end of lifetime), we find that there is a 24% chance that the 

risk reductions for a 55-year-old occur between ages 55 and 64, a 37% chance that the case 

reductions occurs between ages 65 and 74, etc. For distributing avoided cases within an age 

bin, we assume an equal incidence distribution across years within each bin.  

Table H-11 Percent Lung and Bronchus Cancer Incidence by Age and Distribution of 
Risk Reduction by Age for an Exposure Change at 55  

Age Group Percent New Cases per Year by Age* Percent of New Cases Occurring at or After Age 551 

0-20  0  NA  

20-34  0.2  NA  

35-44  0.9  NA  

45-54  6.6  NA  

55-64  21.8  24  

65-74  34.1  37  

75-84  26.6  29  

85-99  9.7  11  

55-99  92.2  100  
*May not sum to 100% due to rounding  
1Calculated as the percentage in column 2 divided by 92.2%, where 92.2% is the percentage of lung and bronchus incidence 
between age 55 and 99.  

H.3.2 Out of Hospital Cardiac Arrest  

The COI for cardiac arrests occurring outside of the hospital is derived from O'Sullivan et al. 

(2011), who estimate three-year medical costs associated with cardiovascular disease events 

among adults ages 35 and older in the U.S. The authors rely on administrative claims data 

from a large U.S. health plan and develop econometric models to predict medical costs for 15 

different cardiovascular events, including cardiac arrest, referred to as resuscitated cardiac 

arrest. The dataset includes over 20 million commercial and Medical Advantage members 

between 2002 and 2006. Cardiac arrests are identified using the ICD-9 code 427.5. The authors 

use propensity score matching to develop a control group with which to compare costs 

versus individuals that suffered cardiac arrest. Medical costs occurring within the month of 
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the event were excluded to avoid double counting hospitalization costs, which are separately 

captured by the hospitalization valuation functions. Over three years, the total medical costs, 

excluding hospitalization, are $36,142 (undiscounted, inflated to 2015$), or $35,880 using a 

2% discount rate, $35,753 using a 3% discount rate, and $35,282 for a 7% discount rate (Table 

H-12). 

Table H-12 Valuation Estimate for Cardiac Arrests (2015$) 

Costs 
Cumulative 
Costs 

Annual Costs 

Undiscounted 2% Discount Rate 3% Discount Rate 7% Discount Rate 

Month of 
Event* 

$43,904 $43,904 $43,904 $43,904 $43,904 

Year 1 $71,901 $27,997 $27,997 $27,997 $27,997 

Year 2 $74,701 $2,800 $2,745 $2,718 $2,617 

Year 3 $80,046 $5,345 $5,138 $5,038 $4,668 

Years 1-3 $80,046 $36,142 $35,880 $35,753 $35,282 
*Excluded to avoid double-counting with hospitalization costs. 

When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default value selected for 

out of hospital cardiac arrest is the 3 year COI using a 2% discount rate presented in Table H-

12. 

H.3.3 Stroke  

Maniloff and Fann (2023) developed COI estimates of direct and delayed health care costs, 

loss of wage income, and home paid caregiving costs associated with a non-fatal first stroke. 

The authors conduct a regression analysis based on 2017 – 2019 medical expenditure data 

from the Agency for Healthcare Research and Quality’s (AHRQ’s) Medical Expenditure Panel 

Survey (MEPS) to estimate the difference in total medical expenditures between individuals 

who report having been diagnosed with new onset stroke and otherwise similar individuals 
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who do report a stroke diagnosis. This approach allows for inclusion of direct medical costs 

due to the stroke itself and medical costs due subsequent health effects that may be related 

to having experienced a stroke (sequelae). The MEPS data includes actual (not billed) insurer 

payments, government payments and individual payments, and includes agency and non-

agency paid caregiving15 in its caregiving cost estimates. The authors report the annual costs 

and present value of lifetime costs of a first stroke for those ages 18 and older, broken into 

three cost categories: health care, lost wage income, and home caregiving. The authors 

estimated lifetime costs using data on expected remaining life expectancy at age of first 

stroke; the resulting present value lifetime estimates are the values used in the BenMAP 

valuation function. The study estimated the average present value lifetime COI for a new 

onset stroke to be $159,067 (2015$) using a 2% discount rate, $150,675 (2015$) using a 3% 

discount rate and $124,845 (2015$) using a 7% discount rate.  

When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default value selected for 

stroke is the lifetime COI for new onset stroke using a 2% discount rate. 

H.4 Acute Symptoms and Illness Not Requiring 

Hospitalization  

Several acute symptoms and illnesses have been associated with air pollution, including 

acute bronchitis in children, upper and lower respiratory symptoms, and exacerbation of 

asthma (as indicated by one of several symptoms whose occurrence in an asthmatic 

generally suggests the onset of an asthma episode). In addition, several more general health 

 
 

 
15 Agency caregivers are individuals who are employed by an established home care agency, whereas non-agency 
workers include private and independent at-home caregivers. 
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effects that are associated with one or more of these acute symptoms and illnesses, such as 

minor restricted activity days, school loss days, and work loss days, have also been 

associated with air pollution. We briefly discuss the derivation of the unit values for acute 

respiratory symptoms (minor restricted activity days), asthma exacerbation, and school loss 

days. Tables H-13 and H-14 summarize the values used by U.S. EPA in their regulatory impact 

analyses. 

Table H-13 Additional Unit Values Available for Myocardial Infarction 

Basis of Estimate 
Age Range 

Medical Cost Opportunity 
Cost Total Cost 

Min Max 

COI: 3 yrs med, 5 yrs wages, 
2% DR, O’Sullivan (2011) 

0 24 $49,108 $0 $49,108 

25 44 $49,108 $17,744 $66,852 

45 54 $49,108 $28,683 $77,791 

55 65 $49,108 $101,050 $150,158 

66 99 $49,108 $0 $49,108 

COI: 3 yrs med, 5 yrs wages, 
3% DR, O’Sullivan (2011) 

0 24 $48,796  $0 $48,796  

25 44 $48,796  $16,798 $65,594 

45 54 $48,796  $27,107 $75,903 

55 65 $48,796  $95,496 $144,292 

66 99 $48,796  $0 $48,796  

COI: 3 yrs med, 5 yrs wages, 
7% DR, O’Sullivan (2011) 

0 24 $47,623  $0 $47,623  

25 44 $47,623  $15,571 $63,194 

45 54 $47,623  $25,212 $72,835 

55 65 $47,623  $88,823 $136,446 

66 99 $47,623  $0 $47,623  
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Table H-14 Core Unit Values Available for Acute Symptoms and Illnesses 

Health Effect Basis for Estimate  
Age Range Unit 

Value 
(2015$) 

Distribution of 
Unit Value 

Parameters of 
Distribution 

Min Max P1 P2 

Minor 
Restricted 
Activity Days 

WTP: 1 day, CV studies 18 99 $70 Triangular 28.51 110.62 

New Onset 
Asthma 

COI: lifetime med, lifetime 
productivity, 2% DR 18 99 $182,681 None 0 0 

COI: lifetime med, lifetime 
productivity, 3% DR 18 99 $146,370 None 0 0 

COI: lifetime med, lifetime 
productivity, 7% DR 

18 99 $77,490 None 0 0 

Cough; Chest 
Tightness; 
Shortness of 
Breath; 
Wheeze 

WTP: 1 symptom-day, 
Dickie and Mesmen (2004) 

0 17 $219 LogNormal 5.390 0.078 

18 99 $115 LogNormal 5.390 0.078 

Albuterol Use COI: use of inhaler 0 99 $0.35 None 0 0 

Allergic 
Rhinitis COI: 1 yr med costs 0 17 $600 None 0 0 

Work Loss 
Days  

County average of mean 
daily wage 18 65 $298* None N/A N/A 

School Loss 
Days  

County average of 
caregiver costs and loss of 
learning, 2% DR 

0 17 $1,116* None N/A N/A 

County average of 
caregiver costs and loss of 
learning, 3% DR 

0 17 $926* None N/A N/A 

County average of 
caregiver costs and loss of 
learning, 7% DR 

0 17 $537* None N/A N/A 

* The applied unit values in BenMAP for these measures are county-specific, based on county-specific mean wages, fringe 
benefits, and/or employment rates. The unit values shown in this table reflect the county average of the county-specific 
variables applied to these health outcomes. 
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When performing the Value of effects step within a BenMAP health analysis, if the Valuation 

Selection chosen is “Use EPA’s current default values” the current default values selected for 

acute symptoms and illness are the valuation functions presented in Tables H-13 and H-14. 

For any health effects with a 2%, 3%, and 7% discount value option of the valuation function, 

the “Use EPA’s current default values” uses the 2% valuation function. 

H.4.1 Non-Fatal Myocardial Infarctions (Heart Attacks)  

In the absence of a suitable WTP value for reductions in the risk of non-fatal heart attacks, 

there are a variety of cost-of-illness unit values available for use in BenMAP. These cost-of-

illness unit values incorporate two components: the direct medical costs and the opportunity 

cost (lost earnings) associated with the illness event. Because the costs associated with a 

heart attack extend beyond the initial event itself, the unit values include costs incurred over 

five years.  

Economic values for acute myocardial infarctions (AMIs, also known as heart attacks) have 

been derived from O'Sullivan et al. (2011), which estimate three-year medical costs 

associated with cardiovascular disease events among adults ages 35 and older in the U.S. The 

authors rely on administrative claims data from a large U.S. health plan and develop 

econometric models to estimate medical costs for 15 different cardiovascular events, 

including AMIs. The dataset includes over 20 million commercial and Medical Advantage 

members between 2002 and 2006. AMIs are identified using the ICD-9 code 410. The authors 

use propensity score matching to develop a control group with which to compare costs 

versus individuals that suffered AMIs. We exclude medical costs within the month of the event 

in an attempt avoid double counting hospitalization costs, which would be captured 

separately in the hospitalization valuation. Over three years, the total medical costs, 

excluding initial hospitalization, are $49,758 (undiscounted, inflated to 2015$), or $49,108 

using a 2% discount rate, $48,796 using a 3% discount rate, and $47,623 using a 7% discount 

rate (Table 25). This study analyzed costs associated with individuals ages 35 and older. We 
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apply the total medical costs to all ages from zero to 99, although only a small portion (<10%) 

of annual AMI incidence occurs in the age range below 35.  

We supplement AMI medical costs with estimates of lost earnings using age-specific 

estimates from Cropper and Krupnick (1990). Using a 2% discount rate, we estimated the 

following present discounted values in lost earnings over 5 years due to a heart attack: 0.229 

times annual earnings for someone between the ages of 25 and 44, 0.371 times annual 

earnings for someone between the ages of 45 and 54, and 1.306 times annual earnings for 

someone between the ages of 55 and 65. The corresponding age-specific estimates of lost 

earnings using a 3% discount rate are 0.219,  0.353, and 1.245 times annual earnings, 

respectively. The corresponding age-specific estimates of lost earnings using a 7% discount 

rate are 0.203, 0.329, and 1.158 times annual earnings, respectively. We estimate annual 

earnings by applying a multiplier that includes county-specific fringe benefits estimates from 

the U.S. Bureau of Labor Statistics’ 2023 National Compensation Survey and an overhead 

coefficient of 1.2 from U.S. EPA’s National Center for Environmental Economics (NCEE) as 

described in U.S. EPA (2023) to mean annual income estimates for workers as defined by 

employment rate data from the 2021 5-year American Community Survey. Cropper and 

Krupnick (1990) does not provide lost earnings for populations under 25 or over 65. As such 

we do not include lost earnings in the cost estimates for these age groups. These costs, along 

with the total valuation estimates for AMIs, are presented in Table H-13. 

H.4.2 Minor Restricted Activity Days (MRADs)  

Two unit values are currently available in BenMAP for MRADs associated with acute 

respiratory symptoms. No studies are reported to have estimated WTP to avoid a minor 

restricted activity day (MRAD). Although Ostro and Rothschild (1989) estimated the 

relationship between PM2.5 and MRADs, rather than MRRADs (a component of MRADs), it is 

likely that most of the MRADs associated with exposure to PM2.5 are in fact MRRADs. The 
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original unit value, then, assumes that MRADs associated with PM exposure may be more 

specifically defined as MRRADs, and uses the estimate of mean WTP to avoid a MRRAD. 

IEc (1993) derived an estimate of WTP to avoid a MRRAD, using WTP estimates from Tolley et 

al. (1986) for avoiding a three-symptom combination of coughing, throat congestion, and 

sinusitis. This estimate of WTP to avoid a MRRAD, so defined, is $38.37 (1990 $). 

Any estimate of mean WTP to avoid a MRRAD (or any other type of restricted activity day 

other than WLD) will be somewhat arbitrary because the effect itself is not precisely defined. 

Many different combinations of symptoms could presumably result in some minor or less 

minor restriction in activity. Krupnick and Kopp (1988) argued that mild symptoms will not be 

sufficient to result in a MRRAD, so that WTP to avoid a MRRAD should exceed WTP to avoid 

any single mild symptom. A single severe symptom or a combination of symptoms could, 

however, be sufficient to restrict activity. Therefore, WTP to avoid a MRRAD should, these 

authors argue, not necessarily exceed WTP to avoid a single severe symptom or a 

combination of symptoms. The “severity” of a symptom, however, is similarly not precisely 

defined; moreover, one level of severity of a symptom could induce restriction of activity for 

one individual while not doing so for another. The same is true for any particular combination 

of symptoms.  

Given that there is inherently a substantial degree of arbitrariness in any point estimate of 

WTP to avoid a MRRAD (or other kinds of restricted activity days), the reasonable bounds on 

such an estimate must be considered. By definition, a MRRAD does not result in loss of work. 

WTP to avoid a MRRAD should therefore be less than WTP to avoid a WLD. At the other 

extreme, WTP to avoid a MRRAD should exceed WTP to avoid a single mild symptom. The 

highest IEc midrange estimate of WTP to avoid a single symptom is $20.03 (1999 $), for eye 

irritation. The point estimate of WTP to avoid a WLD in the benefit analysis is $83 (1990 $). If 

all the single symptoms evaluated by the studies are not severe, then the estimate of WTP to 

avoid a MRRAD should be somewhere between $16 and $83. Because the IEc estimate of $38 
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falls within this range (and acknowledging the degree of arbitrariness associated with any 

estimate within this range), the IEc estimate is used as the mean of a triangular distribution 

centered at $38, ranging from $16 to $61. Adjusting to 2015$, this is a triangular distribution 

centered at $69.58, ranging from $29 to $111. 

The estimate for the MRADs that is used in U.S. EPA benefits analyses can be found in Table H-

14. 

H.4.3 New Onset Asthma  

Maniloff and Fann (2023) developed COI estimates of direct and delayed health care costs, 

loss of wage income, and home paid caregiving costs associated with new onset asthma. The 

authors conduct a regression analysis based on 2017 – 2019 medical expenditure data from 

the Agency for Healthcare Research and Quality’s (AHRQ’s) Medical Expenditure Panel Survey 

(MEPS) to estimate the difference in total medical expenditures between individuals who 

report having been diagnosed with new onset asthma and otherwise similar individuals who 

do report an asthma diagnosis. This approach allows for inclusion of direct medical costs due 

to the asthma itself and medical costs due subsequent health effects that may be related to 

having experienced asthma symptoms. The MEPS data includes actual (not billed) insurer 

payments, government payments and individual payments, and includes agency and non-

agency paid caregiving in its caregiving cost estimates. The authors report the annual costs 

and present value of lifetime costs of new onset asthma for those ages 18 and older, broken 

into three cost categories: health care, lost wage income, and home caregiving. The authors 

estimated lifetime costs using data on expected remaining life expectancy at age of new 

onset asthma; the resulting present value lifetime estimates are the values used in the 

BenMAP valuation function. The study estimated the average present value lifetime COI for a 

new onset asthma to be $182,681 (2015$) using a 2% discount rate, $146,370 (2015$) using a 

3% discount rate, and $77,490 (2015$) using a 7% discount rate. 
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H.4.4 Asthma Symptoms  

The valuation estimates for cough, wheeze, chest tightness, and shortness of breath were 

estimated from the Dickie and Messman (2004) analysis of parents’ WTP to relieve asthma 

symptoms in children and adults. The authors derive the WTP estimates from an attribute-

based, stated-choice question assessing preferences to avoid acute illness as part of a survey 

performed in Hattiesburg, Mississippi in 2000. Survey respondents are asked to identify 

whether they or their child have experienced the following asthma symptoms in the past 

year: cough with phlegm, shortness of breath with wheezing, chest pain on deep inspiration, 

and fever with muscle pain and fatigue. Respondents were then assigned one of sixteen 

illness profiles varying by symptom, symptom duration, in days, as well as discomfort level. 

Dickie and Messman (2004) calculate the WTP for children ages zero to seventeen as $219, for 

one avoided mild symptom-day (2015$). The authors also provide WTP estimates by 

symptom, however, they represent six avoided symptom-days. Therefore, we apply the same 

WTP value, for one avoided mild symptom-day, to each asthma symptom effect. 

We calculated the economic value for albuterol use associated with asthma symptoms 

through prescription costs for albuterol inhalers. Epocrates and GoodRx provide cost and 

actuation information for four common types of albuterol inhalers in 2020 dollars. Both 

online resources utilize published price lists, purchases, claim records, and pharmaceutical 

data to provide clinical statistics. Epocrates and the FDA provide cost and actuation 

information for one additional, less common, albuterol inhaler.70 We divide the cost of 

inhalers by the actuations per inhaler to calculate an average cost per actuation across all 

inhaler types. We then adjust the values to 2015$ using the Consumer Price Index (CPI) for 

medical care. Since medical cost index data were unavailable for 2020 at the time of these 

calculations, we used the most recently available index (2019). The resulting value for asthma 

symptoms, albuterol use is $0.35 per actuation (2015$). 

Table H-14 summarizes the unit values utilized by U.S. EPA for asthma related health effects. 
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H.4.5 Allergic Rhinitis  

 We derived COI estimates for allergic rhinits (also referred to as hay fever) from the 2005 unit 

cost data presented by Soni (2008). The study utilizes data from the Medical Expenditure 

Panel Survey (MEPS) and identifies allergic rhinitis using ICD-9 code 477. Soni (2008) analyzes 

medical expenditures stratified by age group for the years 2000 and 2005, and calculate the 

cost-of-illness as the mean expenditures per person for ambulatory care, in-patient services, 

and prescription medications. The resulting COI for allergic rhinitis is $600 for ages zero to 

seventeen (2015$; Table H-14). The COI estimate represents mean annual medical costs for 

patients with hay fever. Given that the health impact function for this effect relates to allergic 

rhinitis prevalence, these estimates are more applicable than values representing only first-

year costs. 

H.4.6 Work Loss Days (WLDs)  

Work loss days are valued at a day’s wage. BenMAP calculates county-specific mean daily 

wages from county-specific annual wages by dividing by (52*5), then applies a multiplier of 

1.46 for fringe benefits estimates based on the U.S. Bureau of Labor Statistics’ 2023 National 

Compensation Survey and an overhead multiplier of 1.2 from U.S. EPA’s National Center for 

Environmental Economics (NCEE) as described in U.S. EPA (2023) for workers as defined by 

county-specific employment rate data from the 5-year 2021 American Community Survey. 

The average of this county-specific daily wage measure across all counties is approximately 

$298 for ages 18 to 65 (2015$, Table H-14). 

H.4.7  School Loss Days  

We include two costs of school loss days: costs to the caregiver and costs related to the loss of 

learning for the student not attending school, where the latter are estimated as losses to 

future lifetime earnings. We calculate each separately and then sum them in the valuation 
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function. We present three alternatives for this function representing three discount rates 

applied to lifetime earnings portion: 2 percent, 3 percent, and 7 percent. 

The caregiver costs assumes that an adult caregiver stays home with the child and loses any 

wage income they would have earned that day. For working caregivers, we follow U.S. EPA 

guidance and value their time at the average wage including fringe benefits and overhead 

costs (U.S. EPA, 2020a). We apply a multiplier of 1.46 for fringe benefits based on the U.S. 

Bureau of Labor Statistics’ 2023 National Compensation Survey and 1.2 for overhead from 

U.S. EPA’s National Center for Environmental Economics (NCEE) to county-specific mean 

wage estimates from the 2021 5-year American Community Survey (ACS). For nonworking 

caregivers, we assume that the opportunity cost of time is the average after tax earnings. We 

estimate the income tax rate for a median household to be 7% and apply to 2021 ACS county-

specific mean wage estimates. The income tax rate of 7% is the percentage difference in 

median post-tax income and median income from (U.S. Census Bureau, 2021). We then apply 

county-specific employment-population ratios from the 2021 ACS to yield county-specific 

estimates of caregiver costs per school loss day. The average of this county-specific measure 

across all counties is approximately $235 (2015$). 

To measure the loss of learning, we update the Liu et al., 2021 estimate of the impact of a 

school absence on learning as measured by an end-of-course test score.  Liu et al., 2021 

provide an estimate that a school absence leads to a $1,200 reduction in lifetime earnings, 

which is based on the Chetty et al., 2014 estimate of mean lifetime earnings ($522,000 in 

2010$). We first use 2015 Current Population Survey data from the U.S. Census to calculate 

expected lifetime earnings of $1,137,732 (discounting at 2%), $892,579 (discounting at 3%) 

and $390,393 (discounting at 7%).   We then multiply the Liu et al., 2021 estimate of $1,200 by 

(1,137,732/522,000), (892,579/522,000) and (390,393/522,000) and convert from 2010 dollars 

to 2015 dollars based on the Consumer Price Index for All Urban Consumers. This approach 

yields an estimated learning loss of $2,843 per school absence (discounted at 2%), $2,230 per 

school absence (discounted at 3%) or $975 per school absence (discounted at 7%). 
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For BenMAP application, we create a valuation function that uses caregiver costs for 

preschool and elementary school children and the sum of caregiver costs and loss of learning 

for middle school and high school students. We calculate that 31% of children under 18 are 

middle school and high school ages 13-18, distributed equally across the two bins); thus, we 

estimate county-specific averages of the combined effect by summing the county-specific 

estimates of caregiver costs and ($2,843*0.31) with 2% discounting, ($2,230*0.31) with 3% 

discounting, or ($975*0.31) with 7% discounting. The average of this county-specific measure 

across all counties is approximately $1,116 (discounted at 2%), $926 (discounted at 3%) and 

$537 (discounted at 7%) per school day for ages 0 to 17 (2015$, Table H-14). 

A unit value based on the approach described above is likely to understate the value of a 

school loss day in at least three ways:  

1. It omits WTP to avoid the symptoms/illness which resulted in the school absence 

2. The approach omits other aspects of school attendance such as social and emotional 

development or meals 

3. It does not account for deleterious effects on student learning in other subjects.   

 

H.5 Developing Income Growth Adjustment Factors  

Chapter 4 of the BenMAP User Manual provides instructions for formatting and adding 

income growth data. These values are used to adjust WTP estimates for growth in real 

income. As discussed in that chapter, evidence and theory suggest that WTP should increase 

as real income increases.  When reviewing the economic literature to develop income growth 

adjustment factors, it is important to have an economist assist. For an overview of valuation, 

see Chapter 4: Valuation and Discounting.  
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Adjusting WTP to reflect growth in real income requires three steps:  

1. Identify relevant income elasticity estimates from the peer-reviewed literature. 

2. Calculate changes in future income. 

3. Calculate adjustments to WTP based on changes in future income and income elasticity 

estimates. 

1. Identifying income elasticity estimates  

Income elasticity estimates relate changes in demand for goods to changes in income. 

Positive income elasticity suggests that as income rises, demand for the good also rises. 

Negative income elasticity suggests that as income rises, demand for the good falls. BenMAP 

does not adjust Cost-of-Illness (COI) estimates according to changes in income elasticity due 

to the fact that COI estimates the direct cost of a health outcome; instead we adjust this 

metric using inflation factors described above. BenMAP includes income elasticity estimates 

specific to the type of health effect associated with the WTP estimate. BenMAP contains 

elasticity estimates for three types of health effects: minor, severe and mortality. Minor health 

effects are those of short duration. Severe, or chronic, health effects are of longer duration. 

Consistent with economic theory, the peer reviewed literature indicates that income 

elasticity varies according to the severity of the health effect. A review of the literature 

revealed a range of income elasticity estimates that varied across the studies and according 

to the severity of health effect. Table H-15 summarizes the income elasticity estimates for 

minor health effects, severe health effects and mortality. Here we have provided a lower-, 

upper- and central-elasticity estimate for each type of health effect.  
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Table H-15 Income Elasticity Estimates 

Health Effect Lower Bound Central Estimate Upper Bound 

Minor Health Effect 0.04 0.15 0.30 

Severe and Chronic 
Health Effects 0.25 0.45 0.60 

Mortality 0.08 0.40 1.00 

 

2. Calculating changes in future income  

The next input to the WTP adjustment is annual changes in income. Historical U.S. Gross 

Domestic Product (GDP) data (1990-2016) comes from the U.S. Bureau of Commerce’s Bureau 

of Economic Analysis (BEA). GDP values were adjusted for inflation using the BEA’s price index 

for GDP. We divided historical GDP values by populations provided by the BEA to estimate 

GDP per capita to maintain internal consistency in the calculation. Future changes in annual 

income are based on data presented in the Annual Energy Outlook (AEO) 2020, a report 

prepared by the U.S. Energy Information Administration (EIA) (AEO, 2020). AEO published 

annual GDP projections through the year 2050, which were adjusted for inflation using the 

GDP Chain-type Price Index reported by AEO. We divided projected GDP values by AEO’s 

population projections to estimate per capita GDP, again maintaining internal consistency in 

the calculation.      

3. Calculating changes in WTP  

The income elasticity estimates from Table H-15 and the estimated changes in future income 

may then be used to estimate changes in future WTP for each health effect. The adjustment 

formula follows four steps: 
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Equation H-2 

1. ε=
∆𝑊𝑊𝑊𝑊𝑊𝑊
𝑊𝑊𝑊𝑊𝑊𝑊
∆𝐼𝐼
𝐼𝐼

= (𝑊𝑊𝑊𝑊𝑊𝑊2−𝑊𝑊𝑊𝑊𝑊𝑊1)×(𝐼𝐼2+𝐼𝐼1)
(𝐼𝐼2−𝐼𝐼1)×(𝑊𝑊𝑊𝑊𝑊𝑊2+𝑊𝑊𝑊𝑊𝑊𝑊1)

 

2. ε𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊2 +  ε𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊1 −  ε𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊2 − ε𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊1 = 𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊2 + 𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊2 −  𝐼𝐼2𝑊𝑊𝑊𝑊𝑊𝑊1 −

𝐼𝐼1𝑊𝑊𝑊𝑊𝑊𝑊1 

3. 𝑊𝑊𝑊𝑊𝑊𝑊2 × ( ε𝐼𝐼2 −  ε𝐼𝐼1 −  𝐼𝐼2 −  𝐼𝐼1) = 𝑊𝑊𝑊𝑊𝑊𝑊1 × ( ε𝐼𝐼1 −  ε𝐼𝐼2 −  𝐼𝐼1 −  𝐼𝐼2) 

4. 𝑊𝑊𝑊𝑊𝑊𝑊2 = 𝑊𝑊𝑊𝑊𝑊𝑊1 ×  ε𝐼𝐼1− ε𝐼𝐼2− 𝐼𝐼1− 𝐼𝐼2
 ε𝐼𝐼2− ε𝐼𝐼1− 𝐼𝐼2− 𝐼𝐼1

 

Table H-16 summarizes the income-based WTP adjustments used within BenMAP for minor 

health effects, severe health effects, and premature mortality. BenMAP applies the “mid” 

income growth adjustment to the WTP for each corresponding health effect. The “low” and 

“upper” are provided for bounding the “mid” estimate. 
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Table H-16 Income-Based WTP Adjustments by Health Effect and Year 
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H.6 Inflation Indices  

Chapter 4 of the BenMAP User Manual provides instructions for formatting and adding 

inflation data. These values are used to adjust economic values to express monetary units in 

a consistent dollar year. As discussed in that chapter, BenMAP includes inflation factors for 

three different types of values. The source for these values is included in Table H-17. These 

values were re-indexed to $2015 prior to import in BenMAP. 

Table H-17 Inflation Factors 

Name Description Years Source 

All Goods 
Index 

Value of generic 
goods and services 

1980-2022 

BLS, Data Series CUUR0000SA0 at 
http://data.bls.gov/cgi-bin/surveymost?cu 

Medical Cost 
Index 

Value of medical 
expenses 

BLS, Data Series CUUR0000SAM at 
http://data.bls.gov/cgi-bin/surveymost?cu 

Wage Index Value of wages 
BLS, Employment Cost Trends. Table 5 at 
http://www.bls.gov/web/eci/ecicois.txt 

 

 

http://data.bls.gov/cgi-bin/surveymost?cu
http://data.bls.gov/cgi-bin/surveymost?cu
http://www.bls.gov/web/eci/ecicois.txt
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Appendix I. Additional Health Valuation 

Functions in BenMAP 

In this Appendix, we present additional health valuation functions that are included in 

BenMAP but are not currently used regularly in U.S. EPA regulatory analyses. PLACEHOLDER: 

Information on additional functions will be included here as they are added to the tool 

by U.S. EPA. 
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Appendix J. Population & Other Data in 

BenMAP 

This section describes the population, monitor, and demographic data for the United States 

included in BenMAP. It consists of the following three subsections: 

Population Data. This describes how BenMAP forecasts population; the block-level and 

county-level data underlying the forecasts; and the PopGrid software application, which 

aggregates block-level population data to whatever grid definition might be needed. The 

population data currently in the web tool through year 2050 relies on the same procedures 

described in this Appendix. The web tool adds a population projection for 2055 based on a 

linear extrapolation of the projection trend through 2050 from the desktop tool. 

Implementation of user-input population data and projections, e.g., using PopGrid tool, will 

be included in a future release of the web tool. 

Monitor Data. The current version of the web tool does not support the use of monitor data 

for air quality surfaces.  Support for monitor data will be included in a future release. 

Demographic Datasets. This subsection describes the various U.S. datasets in BenMAP related 

to demography: household size, poverty rates, and educational attainment. The web tool 

currently includes the full set of data described in this appendix; however the variables used 

by the tool are limited to those included in the default set of Health Impact Functions. 

Broader user access to these variables and more complete integration with user-specified 

health impact functions will be implemented in a future version. 
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J.1 Population Data for the U.S. 

BenMAP calculates health impacts for any desired grid definition, so long as you have a 

shapefile for that grid definition and population data for that grid definition. In this 

description, we use the term “population grid cell” to refer to a cell (e.g., county) within a grid 

definition. The foundation for calculating the U.S. population in the population grid-cells is 

2010 Census block data. A separate application called “PopGrid,” described below, combines 

the Census block data with any user-specified set of population grid- cells, so long as they are 

defined by a GIS shape file. Unfortunately, PopGrid relies on extremely large census files that 

are too large to include with BenMAP – hence the need for the separate application. The 

PopGrid program is available on the BenMAP website here: www.epa.gov/benmap 

Within any given population grid-cell, BenMAP has 304 unique race-ethnicity-gender-age 

groups: 19 age groups by 2 ethnic groups by gender by 4 racial groups (19*2*2*4=304). Table 

J-1 presents the 304 population variables available in BenMAP. As discussed below, these 

variables are available for use in developing age estimates in whatever grouping you require. 

Table J-1 Demographic Groups and Variables Available in BenMAP 

Racial Group Ethnicity Age Gender 

White, African 
American, Asian, 
American Indian 

Hispanic, 
Non-Hispanic 

<1, 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 
30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 
60-64, 65-69, 70-74, 75-79, 80-84, 85+ 

Male, Female 

 

In this section on U.S. population data in BenMAP, we describe:  

Forecasting Population. This describes how BenMAP forecasts population.  

Data Needed. This section describes the block-level and county-level data underlying the 

forecasts. 

file://iec.local/store2/share/OAQPS%202021/BenMAP%20FollowOn%20(TO%206)/Task%202.2%20BenMAP%20Cloud%20Tool/2.2.1%20User%20Accounts_Reg%20Version/BenMAP%20Cloud%20User%20Manual/Latest%20Desktop%20User%20Manual/Re-formatted%20chapters/www.epa.gov/benmap
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PopGrid. This section reviews the PopGrid software application, which aggregates block-level 

population data to whatever grid definition might be need. 

J.1.1 How BenMAP Forecasts Population 

In calculating the population in age groups that may include a portion of one of the pre-

specified demographic groups in Table J-1, BenMAP assumes the population is uniformly 

distributed in the age group. For example, to calculate the number of children ages 3 through 

12, BenMAP calculates:  

Equation J-1 

 

To estimate population levels for the years after the last Census in 2010, BenMAP scales the 

2010 Census-based estimate with the ratio of the county-level forecast for the future year of 

interest over the 2010 county-level population level. Woods & Poole (2015) provides the 

county-level population forecasts used to calculate the scaling ratios; these data are 

discussed in detail below.  

In the simplest case, where one is forecasting a single population variable, say, children ages 

4 to 9 in the year 2020, BenMAP calculates: 

Equation J-2 

 

Where the gth population grid-cell is wholly located within a given county. 
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In the case, where the gth grid-cell includes “n” counties in its boundary, the situation is 

somewhat more complicated. BenMAP first estimates the fraction of individuals in a given 

age group (e.g., ages 4 to 9) that reside in the part of each county within the gth grid-cell. 

BenMAP calculates this fraction by simply dividing the population all ages of a given county 

within the gth grid-cell by the total population in the gth grid-cell:  

Equation J-3 

 

Multiplying this fraction with the number of individuals ages 4 to 9 in the year 2010 gives an 

estimate of the number of individuals ages 4 to 9 that reside in the fraction of the county 

within the gth grid-cell in the year 2010: 

Equation J-4 

 

To then forecast the population in 2020, we scale the 2010 estimate with the ratio of the 

county projection for 2020 to the county projection for 2010:  

Equation J-5 

 

Combining all these steps for “n” counties within the gth grid-cell, we forecast the population 

of persons ages 4 to 9 in the year 2020 as follows:  

Equation J-6 
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In the case where there are multiple age groups and multiple counties, BenMAP first 

calculates the forecasted population level for individual age groups, and then combines the 

forecasted age groups. In calculating the number of children ages 4 to 12, BenMAP calculates:  

Equation J-7 

 

 

 

To estimate population for 2055, we extrapolate Woods and Poole projections from the 2045 

to 2050 period: 

Equation J-8 

𝑊𝑊2055,𝑖𝑖 = 𝑊𝑊2050,𝑖𝑖 ∗
𝑊𝑊2050,𝑖𝑖

𝑊𝑊2045,𝑖𝑖
 

where W is the growth weight (relative to 2010) and i is each demographic cell (i.e., unique 

combinations of county, gender, ethnicity, race, and age range). 

J.1.2  Data Needed for Forecasting  

Underlying the population forecasts in BenMAP there are block-level databases used to 

provide year 2010 population estimates and a county-level database of forecast ratios. Both 

files have the same set of 304 race-ethnicity-gender-age population groups.  
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The block-level data is typically not used directly in BenMAP, and instead is used with the 

PopGrid software (described below) to provide year 2010 estimates for a grid definition of 

interest (e.g., 12 kilometer CMAQ grid). The output from PopGrid with the year 2010 

population estimates can then be loaded into BenMAP.  

The county-level data comes pre-installed and is not something that you need to load 

yourself. These data are simply county-level ratios of a year (2009, 2011-2050) and year 2010 

population data for each county and each of the 304 race-ethnicity-gender-age population 

groups.  

We describe the development of each databases below. 

J.1.2.1  Block-Level Census 2010  

There are about five million “blocks” in the United States, and for each block we have 304 

race-ethnicity-gender-age groups. The block-level population database is created separately 

for each state, in order to make the data more manageable. (A single national file of block 

data would be about six gigabytes.)  

The initial block file from the U.S. Census Bureau is not in the form needed. The block data 

has 7 racial categories and 23 age groups, as opposed to the 4 and 19 used in BenMAP. Table 

J-2 summarizes the initial set of variables and the final desired set of variables. 
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Table J-2 Race, Ethnicity and Age Variables in 2010 Census Block Data 

Type Race Ethnicity Gender Age 

Initial 
Variables 
(SF1 file) 

White Alone, Black Alone, 
Native American Alone, Asian 
Alone, Pacific 
Islander/Hawaiian Alone, 
Other Alone, Two or More 
Alone 

-- Male, 
Female 

0-4, 5-9, 10-14, 15-17, 18-19, 
20, 21, 22-24, 25-29, 30-34, 
35-39, 40-44, 45-49, 50-54, 
55-59, 60-61, 62-64, 65-66, 
67-69, 70-74, 75-79, 80-84, 
85+ 

Final 
Desired 
Variables 

White, African-American, 
Asian-American, Native-
American 

Hispanic, 
Non-
Hispanic 

Female, 
Male 

<1,1-4, 5-9, 10-14, 15-19, 20-
24, 25-29, 30-34, 35-39, 40-
44, 45-49, 50-54, 55-59, 60-
64, 65-69, 70-74, 75-79, 80-
84, 85+ 

 

The initial set of input files are as follows.  

Census 2010 block-level and tract-level files (Summary File 1)  

Data: http://www2.census.gov/census_2010/04-Summary_File_1/  

Docs: http://www.census.gov/prod/cen2010/doc/sf1.pdf  

Census 2000 MARS national-level summary  

Docs: http://www.census.gov/popest/archives/files/MRSF-01-US1.pdf  

The SF1 tract-level and MARS data, as described below, are needed to reorganize the 

variables that come initially in the block-levelSF1 file. (For the sake of completeness, we note 

that there exists a county-level Census 2000 MARS file; however, due to major population 

count discrepancies between the county-level MARS file and block-level SF1 file, we used only 

the nation-level summary table. Tables in MARS documentation file did not have the 

discrepancies that the county-level file had. We were unable to get an adequate explanation 

of this from the U. S. Census.)  

The steps in preparing the data are as follows:  
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1. Adjust Age-classifications:  

We combined some age groups in the block-level SF1 data to match the age groups wanted 

for BenMAP. For example, we combined age groups 15-17 and 18-19 to create the 15-19 age 

group used in BenMAP. Then, in the case of the 0-4 age group, we split it into <1 and 1-4 using 

the tract-level SF1 data, which gave us the fraction of 0-4 year-olds who are <1.  

2. Fill in Missing Racial-Ethnic Interactions:  

We used the tract-level SF1 data to calculate the fraction of Hispanics in each ethnically-

aggregated subpopulation from the block-level data, by age and sex. We used these fractions 

to distribute each age-sex-race-block-level datum into Hispanics and non-Hispanics.  

3. Assign “Other” and “Multi-Racial” to the Remaining Four Racial Categories:  

We assign the “Other” race category in two steps. First, based on the national MARS data, we 

estimated how many people in the “multi-racial” category checked off “some other race” as 

one of their races, for Hispanics and non-Hispanics separately. In each age-sex-race-block-

level datum, we added those people to “other race” category to create the re-distribution 

pool, analogously to the method implemented by Census while creating MARS data (see U.S. 

Census Bureau, 2002a, Table 1, below). Second, based on the national re-allocation fractions 

for Hispanics and non-Hispanics (derived from the MARS data), we assigned the “Other” race 

into the four races of interest and “multi-race”.  

After the assignment of the “Other” race category, we then assigned “multi-racial” category 

to the four racial categories, using state fractions of these races in each age-sex-race-block- 

level datum. 
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Table J.3 Summary of Modified Race and Census 2000 Race Distributions for the 
United States 
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J.1.2.2  County-Level Forecasts  

Woods & Poole (2015) developed county-level forecasts for each year from 2000 through 

2050, by age and gender for non-Hispanic White, African-American, Asian-American, and 

Native-American and for all Hispanics. A link to their website can be found here. As discussed 

below, the adjustments necessary to prepare the data for use in BenMAP are relatively 

straightforward.  

For each non-Hispanic subset of the population and each year from 2000-2050, we divided 

the Woods and Poole population for that year by the Woods and Poole population for that 

subset in 2010. These serve as the growth coefficients for the non-Hispanic subsets of each 

race. We used a similar calculation to determine the growth rates for the Hispanic population. 

We assume that each Hispanic race grows at the same rate, and use these growth rates for the 

Hispanic subsets of each race.16 

Matching Age Groups Used in BenMAP  

There are 86 age groups, so it is a simple matter of aggregating age groups to match the 19 

used in BenMAP.  

Matching Counties Used in U.S. Census  

The county geographic boundaries used by Woods & Poole are somewhat more aggregated 

than the county definitions used in the 2010 Census and those in BenMAP, and the FIPS codes 

used by Woods and Poole are not always the standard codes used in the Census. To make the 

 
 

 
16 Previous versions of the BenMAP program used a different methodology whereby population estimates for 2000 
– 2009 were adjusted using the ratio of 2000 Woods & Poole estimated population and 2000 Census population. 

https://www.woodsandpoole.com/
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Woods and Poole data consistent with the county definitions in BenMAP, we disaggregated 

the Woods and Poole data and changed some of the FIPS codes to match the U.S. Census.  

Calculating Growth Ratios with Zero Population in 2010  

There are a small number of cases were the 2010 county population for a specific 

demographic group is zero, so the ratio of any future year to the year 2010 data is undefined. 

In these relatively rare cases, we prepared statewide and national totals and used ratios at 

the higher levels of geographic aggregation when the more local ratios caused divide-by-zero 

errors.  

J.2 U.S. Demographic Datasets in BenMAP 

BenMAP includes county-level data on household size, poverty status, educational 

attainment, unemployment, health insurance coverage, and occupational status. We 

describe the data sources and processing methodology for each dataset below. All estimates 

were generated at the county level for 3,109 counties in the contiguous United States.17 

J.2.1 Household Size 

To generate average household size for each county, we utilize ACS 5-year estimates for 2012 

to 2016. Average household size was provided by ACS at the county level for all counties 

 
 

 
17In 2013, Bedford city, Virginia was removed from the list of counties in the U.S. Due to BenMAP’s grid definition, 
we continue to include Bedford city (FIPS code 51515) in this update. We impute the value for this county using the 
value for the county with which it was combined (Bedford County, FIPS code 51019). In 2015, Oglala Lakota County, 
South Dakota (46102) changed name and code from Shannon County (46113). To match BenMAP’s grid definition, 
we use the old FIPS code (46113) for this county. For further information, please see the Census website: 
https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.html  

https://www.census.gov/programs-surveys/geography/technical-documentation/county-changes.html
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except for two, for which data were not available.18 For these counties, we applied the state 

level average household size. 

J.2.2 Educational Attainment 

We use data from the ACS to provide county-level summaries of educational attainment. 

These data represent 5-year average ACS estimates from 2015 to 2019. Specifically, the data 

included in BenMAP span two broad education categories: no high school diploma (termed 

“no_hs_degree”), and high school diploma (or equivalency) and above (termed 

“hs_degree_plus”). The latter category includes individuals with a high school diploma (or 

equivalency), some college, college degree, or post-graduate degree and ranges from 53-

98%. 

For both education groups (with/without HS diploma), we estimate the fraction of the total 

county population (ages 25 years and above) in each education group. Thus, the two 

estimates sum to one for each county.  

For each estimate, we generate a coefficient of variation (CV) equal to the ratio of the 

standard error to the point estimate. For counties with a CV greater than 0.3 (1.7% percent of 

all counties), we impute the county-level estimate with a state-level estimate following 

Census guidance, which defines any estimate with a CV greater than 0.3 as low reliability and 

to be used with extreme caution (King et al. 2015). 

 
 

 
18 The two counties without data were Shannon County, South Dakota (FIPS Code 46113) and Bedford, Virginia (FIPS 
Code 51515). 
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J.2.3 Poverty Status 

To determine the poverty status at the county level, we utilize ACS 5-year estimates from 

2015 to 2019. The resulting datasets represent the fraction of the total population in the 

county that falls below the federal poverty line (termed “below_poverty_line”) and the 

fraction of the population that falls above the poverty line (termed “above_poverty_line”). 

The EPA Standard Variables dataset also includes two variables (termed 

“below_2x_poverty_line” and “above_2x_poverty_line”) representing the fraction of the 

county-level population below and above 200% of the poverty line. The county-level 

proportions below the poverty line range from 3-55% and below 200% of the poverty line 

range from 8-75%. 

For each estimate, we generate a coefficient of variation (CV) equal to the ratio of the 

standard error to the point estimate. For counties with a CV greater than 0.3 (1.7% percent of 

all counties), we impute the county-level estimate with a state-level estimate following 

Census guidance, which defines any estimate with a CV greater than 0.3 as low reliability and 

to be used with extreme caution (King et al. 2015). 

J.2.5 Health Insurance 

We use data from the Small Area Health Insurance Estimates (SAHIE) collected by the U.S. 

Census Bureau from 2015 to 2019 to calculate the percentage of individuals with and without 

health insurance in each county. The SAHIE date provides the number of individuals with and 

without health insurance by county. Calculations were done for each year individually and 

then averaged together to create a five-year average. 
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J.2.6 Blue Collar Workers 

We use five-year estimates (2012-2016) from the ACS to estimate the fraction of each county’s 

labor force employed in white collar and blue collar occupations. The dataset includes the 

number of employed individuals over 16 that work within five occupation categories. We 

assign each of these five occupations to either the blue collar or white collar designation, as 

shown in Table J-3. 

Table J-4 Mapping Occupations to Blue Collar and White Collar Designations 

Occupation Designation 

Management, business, science and arts White collar 

Service White collar  

Sales and office White collar 

Natural resources, construction and maintenance Blue collar 

Production, transportation and material moving Blue collar 

 

We calculate the fraction of each county in blue collar professions by dividing the total 

number of individuals employed in blue collar jobs by the total number of employed 

individuals within each county. The same calculation is done for white collar professions. We 

adjust FIPS codes to match the BenMAP county grid definition, as described in section J.3.5. 
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Appendix K. Uncertainty & Pooling  

This Appendix discusses the treatment of uncertainty in BenMAP, both for incidence changes 

and associated dollar benefits. Some background is then given on pooling methodology. 

Pooling functionality is not implemented in the current version of the tool, though we 

expect it to be addressed in a future version. 

K.1 Uncertainty  

Although there are several sources of uncertainty affecting estimates of incidence changes 

and associated benefits, the sources of uncertainty that are most readily quantifiable in 

benefit analyses are uncertainty surrounding the health impact functions and uncertainty 

surrounding unit dollar values. The total dollar benefit associated with a given health effect 

depends on how much the health effect will change in the control scenario (e.g., how many 

premature deaths will be avoided) and how much each unit of change is worth (e.g., how 

much a statistical death avoided is worth).  

Both the uncertainty about the incidence changes and uncertainty about unit dollar values 

can be characterized by distributions. Each “uncertainty distribution” characterizes our 

beliefs about what the true value of an unknown (e.g., the true change in incidence of a given 

health effect) is likely to be, based on the available information from relevant studies. 

Although such an “uncertainty distribution” is not formally a Bayesian posterior distribution, 

it is very similar in concept and function (see, for example, the discussion of the Bayesian 

approach in Kennedy 1990, pp. 168-172). Unlike a sampling distribution (which describes the 

possible values that an estimator of an unknown value might take on), this uncertainty 

distribution describes our beliefs about what values the unknown value itself might be.  
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Such uncertainty distributions can be constructed for each underlying unknown (such as a 

particular pollutant coefficient for a particular location) or for a function of several underlying 

unknowns (such as the total dollar benefit of a regulation). In either case, an uncertainty 

distribution is a characterization of our beliefs about what the unknown (or the function of 

unknowns) is likely to be, based on all the available relevant information. Uncertainty 

statements based on such distributions are typically expressed as 90 percent credible 

intervals. This is the interval from the fifth percentile point of the uncertainty distribution to 

the ninety-fifth percentile point. The 90 percent credible interval is a “credible range” within 

which, according to the available information (embodied in the uncertainty distribution of 

possible values), we believe the true value to lie with 90 percent probability. The uncertainty 

surrounding both incidence estimates and dollar benefits estimates can be characterized 

quantitatively in BenMAP. Each is described separately below.  

K.1.1 Characterization of Uncertainty Surrounding Incidence Changes  

To calculate point estimates of the changes in incidence of a given adverse health effect 

associated with a given set of air quality changes, BenMAP performs a series of calculations at 

each grid-cell. First, it accesses the health impact functions needed for the analysis, and then 

it accesses any data needed by the health impact functions. Typically, these include the grid-

cell population, the change in population exposure at the grid-cell, and the appropriate 

baseline incidence rate. BenMAP then calculates the change in incidence of adverse health 

effects for each selected health impact function. The resulting incidence change is stored, 

and BenMAP proceeds to the next grid-cell, where the above process is repeated.  

BenMAP reflects the uncertainty surrounding estimated incidence changes (resulting from 

uncertainty surrounding the pollutant coefficients in the health impact functions used) by 

producing a distribution of possible incidence changes for each cell, rather than a single point 

estimate. This is done by assuming that the pollutant coefficient (Beta, or β) is normally 
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distributed, and sampling 20 evenly spaced percentiles (i.e., 2.5th, 7.5th, … , 97.5th percentiles) 

to represent the distribution. 

K.1.2 Characterization of Uncertainty Surrounding Dollar Benefits 

The uncertainty distribution of the dollar benefits associated with a given health or welfare 

effect is derived from the two underlying uncertainty distributions - the distribution of the 

change in incidence of the effect (number of cases avoided) and the distribution of the value 

of a case avoided (the “unit value”). The derivation of the uncertainty distribution for 

incidence change is described above. The distributions used to characterize the uncertainty 

surrounding unit values are described in detail in the appendix on the Economic Value of 

Health Effects. 

To represent the underlying distribution of uncertainty surrounding unit values, BenMAP uses 

20 evenly spaced percentile values, similar to the method used for representing incidence 

change uncertainty. 

A distribution of the uncertainty surrounding the dollar benefits associated with a given 

health effect is then derived from the percentile values generated to represent the change in 

incidence and the percentile values generated to represent the unit value distribution. To 

derive this new distribution, each of the 20 unit values is multiplied by each of the 20 

incidence change values, leading to a set of 400 dollar benefits. These values are sorted and 

binned to create a distribution of the dollar benefits.  
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Appendix L. Function Editor  

The function editor is used to develop both health impact functions and valuation functions. 

This appendix describes the syntax of this editor. This functionality is not implemented in 

the current version of the tool, though we expect it to be present in a future version. 
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Appendix M. Legacy BenMAP Analyses 

As U.S. EPA’s flagship tool for assessing health impacts of air pollutants, BenMAP plays an 

important role in the regulatory development process for regulations affecting air quality.  

BenMAP has thus been designed to maximize transparency regarding the data and analytical 

choices made in each run, to facilitate replication of the results from a particular analysis by 

interested parties. In addition to the detailed run log and access to input data files, accurate 

replication may also require access to the version of the BenMAP tool that was active at the 

time of the original analysis. Although the general methodology remains identical from 

version to version, small changes in the tool’s functionality or underlying database can cause 

small deviations in results or possible incompatibilities. The instructions below describe how 

to install and run locally legacy versions of the BenMAP web tool that are available for 

download from U.S. EPA. These legacy versions can be used to reanalyze datasets under 

conditions identical to their original analysis. 

The following section presents instructions for how to set up the software necessary to create 

a virtual implementation of a previous BenMAP version, and then use it to produce results 

under legacy conditions.  

Note that this approach requires you to run the legacy tool using your desktop or laptop 

computer. Although you access it through a browser the entire tool and its database will be 

stored and accessed locally and performance will be dependent on your computer’s 

resources. We recommend your computer have at least 35 GB of free hard drive space and 8 

GB of RAM to run effectively. 

BenMAP VirtualBox Setup 

While the most recent version of BenMAP is actively maintained and available online, 

previous versions of BenMAP cloud are no longer immediately accessible via URL. Archives 
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legacy versions may be downloaded from U.S. EPA at www.epa.gov/benmap; these archives 

can be opened and run on a user’s local computer using freely available VirtualBox software. 

VirtualBox enables users to create a temporary instance of BenMAP that can then be accessed 

via your web browser. 

Installing the VirtualBox software 

● Download VirtualBox - https://www.virtualbox.org/wiki/Downloads ; we recommend 

you download the most recent version listed for your operating system. (Note that Mac 

computers using Apple’s M1 or M2 chips are not officially supported yet by VirtualBox, 

though you may download a Beta application.) 

● Install VirtualBox. 

○ If installing on Windows, you may also be asked to install “Microsoft Visual C++ 

2019 Redistributable package.”  

 Use this link to access the download links for the package: 

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-

redist 

 Make sure to download the appropriate installer for your machine. 

 Once installed, the Microsoft Visual C++ 2019 Redistributable package 

will ask you to restart your computer. 

 

https://www.virtualbox.org/wiki/Downloads
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
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○ If installing on an Apple computer you may be shown the following: 

  

Click OK. 

 

Open System Settings, and Allow . 

Downloading the BenMAP VirtualBox Machine file 

The next step requires you to download a compressed file containing the “BenMAP VirtualBox 

Machine.” The zip file contains the file that the VirtualBox software uses to emulate an 

instance of a legacy BenMAP web version. These files may be downloaded from 

www.epa.gov/benmap. Contact the current administrators of BenMAP Cloud if you do not see 

the specific version of BenMAP you need.  

Once you have the BenMAP VirtualBox Machine compressed file:  

● Save the compressed file to an easily accessible folder. 

○ The download file will be about 6 GB. 

● Uncompress the file using a tool that will unzip the file (e.g. 7-zip, WinZip, Mac Archive 

Utility. 
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○ The uncompressed file will be several gigabytes; make sure you have at least 35 

GB of free space before unzipping the compressed file. 

○ Once uncompressed, you will have a folder with two files in it: 

 BenMap Prod YYYY-MM.vdi  

 BenMap Prod YYYY-MM.vbox 

○ The YYYY and MM will correspond to the version of BenMAP Cloud you will be 

running. 

○ You can now delete the original .zip file. 

Configuring and Running VirtualBox  

Once installed – open the VirtualBox application. 

• Apple users should see this screen: 
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• Window users should see this screen: 

 

• Under the “Machine” dropdown menu, select the “Add” function. 

• Find the location where you unzipped the .vbox file and select the version you want to 

load into the emulator. 

• Apple users should see this screen: 
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• Window users should see this screen:  

 

• To start the Virtual Machine, click the green “Start” arrow. 

You may see the following warnings: 

• Scale Mode 

 
o This notification indicates how the virtual machine will appear as a window. 

Click “Switch” to proceed. 
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• Network Error 

o A warning regarding the network interface may also appear (see image below). 

If so, follow the below steps to change your network settings: 

 

 Back on the home page, click the “Settings” gear icon. 

 Select the “Network” tab. 

 DO NOT CHANGE the “Bridged Adapter” setting under the “Attached 

To” text. Only change the “Name” of the network adaptor. 

 Select the appropriate internet device that you are currently using to 

connect to the internet. There should be various options including WiFi 

or Ethernet devices. 

 Apple users should see this drop down screen: 
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 Windows users should see this drop down screen: 

 

● Once the Network settings have been configured for your computer’s setup, you 

should be able to return to the home menu and click on the green “Start” arrow and 

have it successfully load the VirtualBox. 

● You should see the VirtualBox going through several steps as it sets up a virtual version 

of BenMAP. Once it is complete, you will see the below text: 

 

• The address you see may be different based on your network. 

o If there is only a partial “:8080” address given, you may need to go back to the 

network settings and ensure you have selected the appropriate device.  

• Wait about 30 seconds after the above text appears to let VirtualBox run and setup its 

residual applications. 

• You do not need to log in or do anything else with VirtualBox, but do not exit or shut 

down the VirtualBox Program, as it will continue hosting the image of BenMAP online. 
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• Open a web browser and type the address that appears in the VirtualBox into the URL 

bar (e.g. 192.168.30.200:8080). 

• You should now have access to the legacy version of BenMAP: 

 

• Once you have completed your analyses using the legacy version of BenMAP in your 

web browser, you may close the tab or web browser itself. 

• Follow the steps in the next section to safely shut down the VirtualBox. 

Shutting Down VirtualBox 

● IMPORTANT: Before you exit VirtualBox, make sure there are no BenMAP tasks 

running in the web browser. 

● Back in the VirtualBox application, right click on the “Running” BenMAP instance. 

○ Windows Users: 
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 You will see the dropdown menu pictured below: 

 

 Under the “Stop” side menu, select the “ACPI Shutdown.” 

 You will be asked to verify with the box below: 

 

 Use this notification to double check that you have no running tasks in 

BenMAP on your browser before confirming the “ACPI Shutdown.” 

○ Apple Users: 
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 You will see the dropdown menu pictured below: 

 

 Under the “Close” side menu, select the “ACPI Shutdown.”  

 You will be asked to verify with the box below: 

 

 Use this notification to double check that you have no running tasks in 

BenMAP on your browser before confirming the “ACPI Shutdown.” 
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OPTIONAL 

● You can adjust the Base Memory and/or Processors by clicking on the Gear Icon for 

settings. 

● Click on the System Icon and you will be able to change your Base Memory. 

● Click on the Processor sub menu, and you will be able to select the number of 

processors. 

NOTE: 

The size of the BenMAP VirtualBox image will grow over time and consume more disk space 

as you run more scenarios. If it gets too large, you can always just start fresh with a new 

BenMAP VirtualBox image. 
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