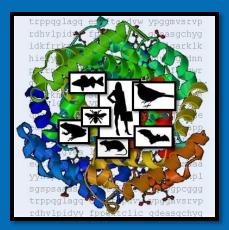
Sequence Alignment to Predict Across Species Sensitivity (SeqAPASS) **Virtual Training** May 1, 2025

Presented by the New Approach Methods (NAMs) Training Program EPA's Center for Computational Toxicology and Exposure

EPA NAMs Pilot Training Program

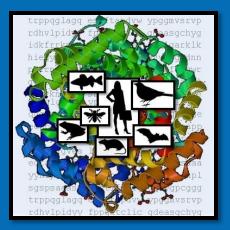
- New Approach Methodologies (NAMs) Training Program is a deliverable in the Agency's Work Plan, first released in 2019 and updated in 2021.
 - Previous trainings include ECOTOX, CompTox Chemicals Dashboard, GenRA, httk R Package, and the AOP Wiki.
- Goal: Develop, implement and maintain an engaging training program.
 - Interactive case studies to encourage active learning
 - Train the trainer
 - Obtain feedback
- The EPA NAMs training website includes existing training resources, including recordings and guidance documents.



EPA NAMs Training: www.epa.gov/chemical-research/new-approach-methods-nams-training

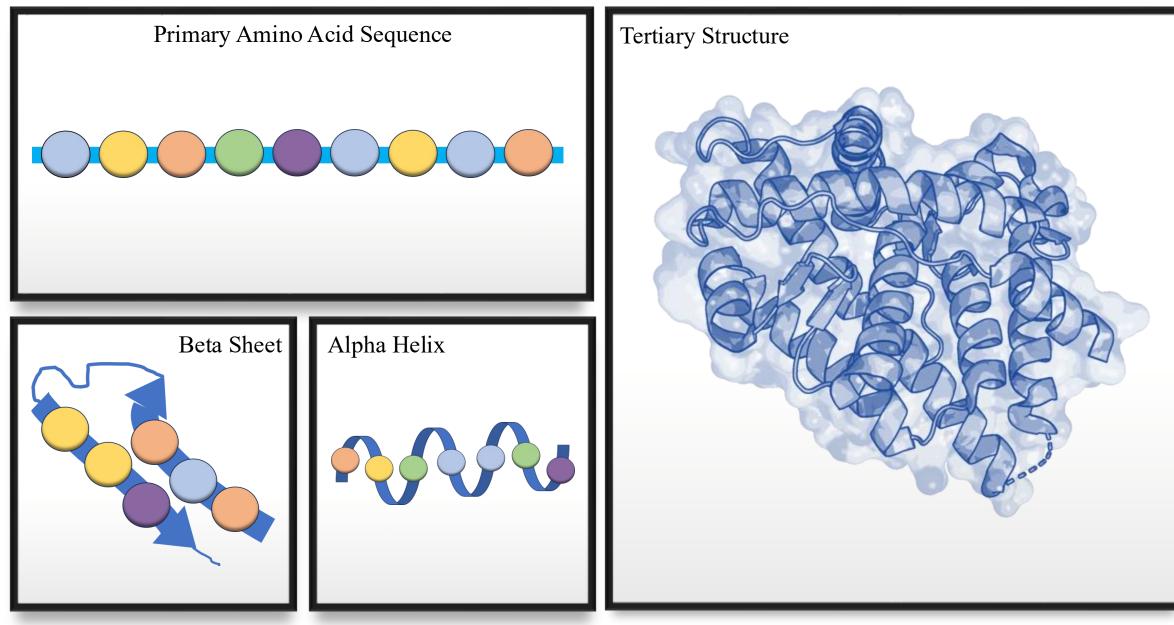
EPA New Approach Methods (NAMs) Virtual Training: SeqAPASS Tool

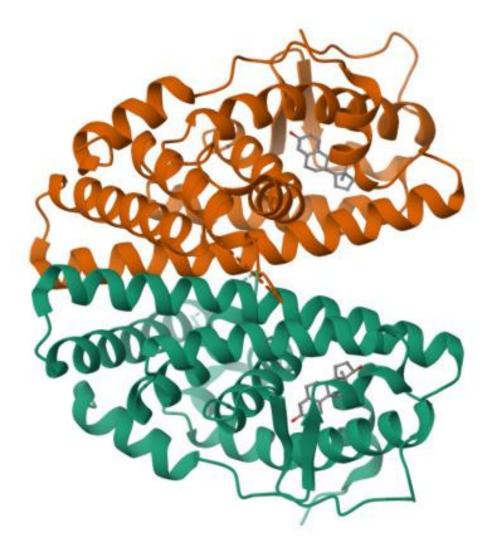
<u>Instructors:</u> Ryan Staub Peter Schumann, MS Carlie A. LaLone, Ph.D.



Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA

Introduction – Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS):


Instructors: Peter Schumann Carlie A. LaLone

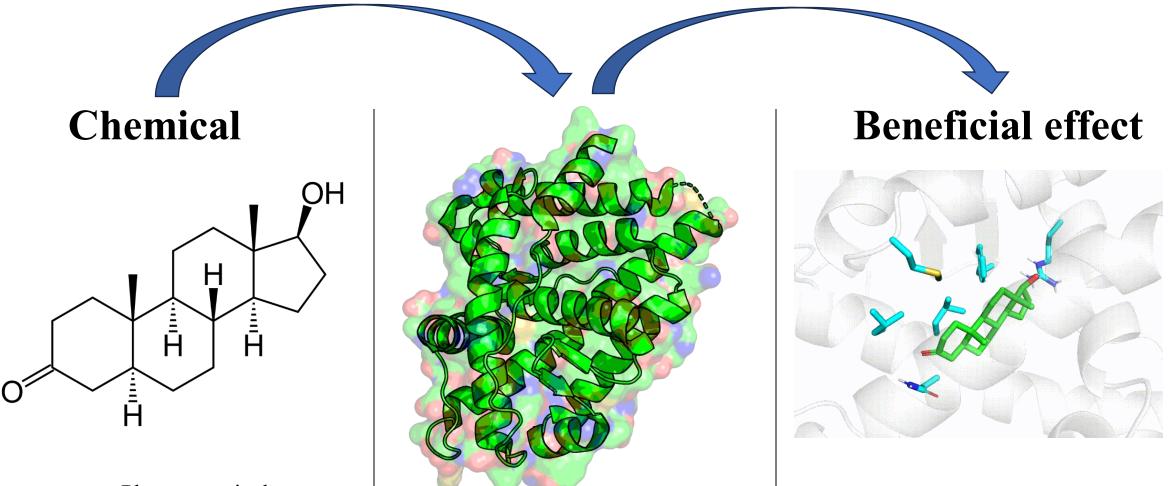


Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA

Protein 101

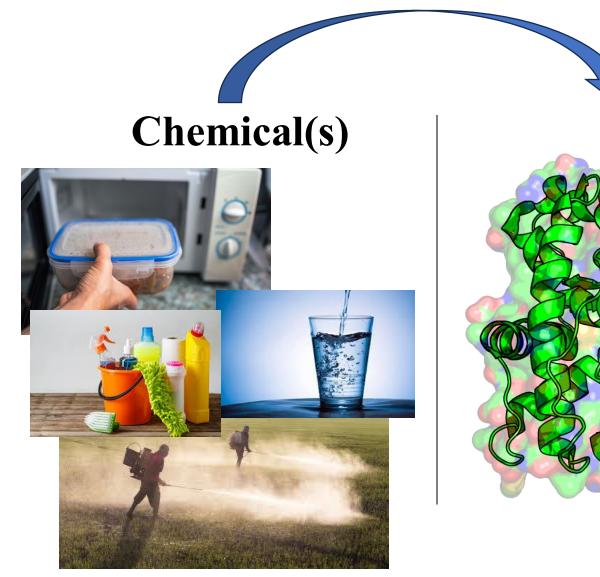
Protein Structure = Function

Regulate gene expression Structural support Biochemical catalysts Transporting molecules Repair and maintain muscle mass Hormones Enzymes **Regulate immune response**

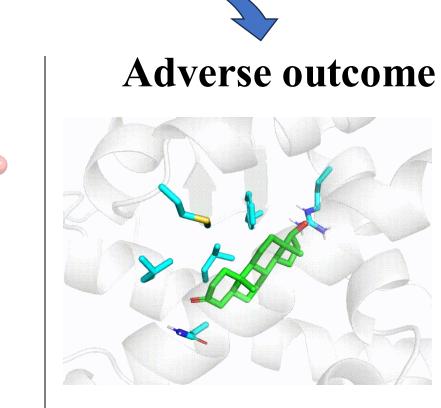

What's all the fuss about proteins??

The second secon

Our interest is in protecting human health and the environment

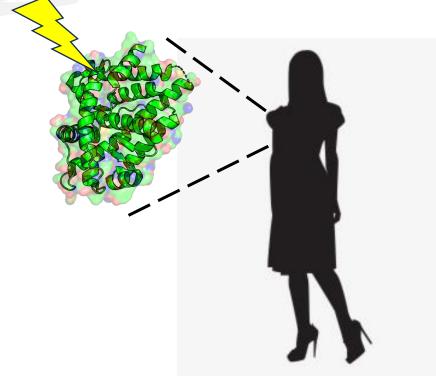


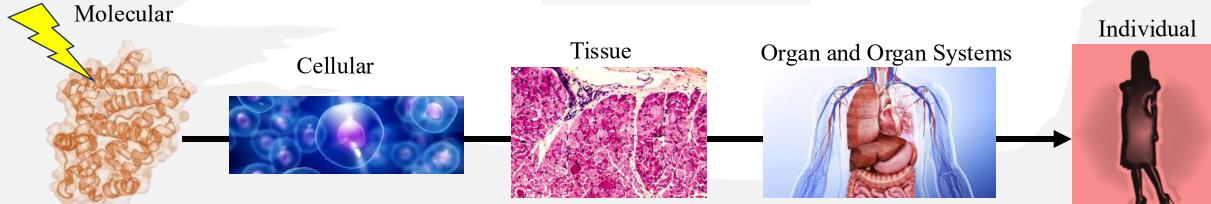
Chemical-Protein Interaction



e.g., Pharmaceutical

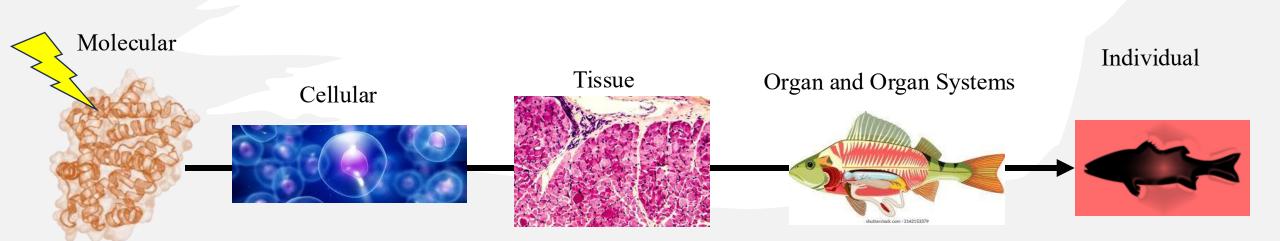
Chemical-Protein Interaction

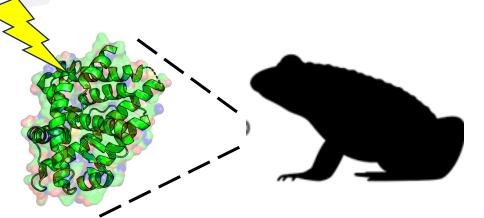

Unintended Chemical Exposure

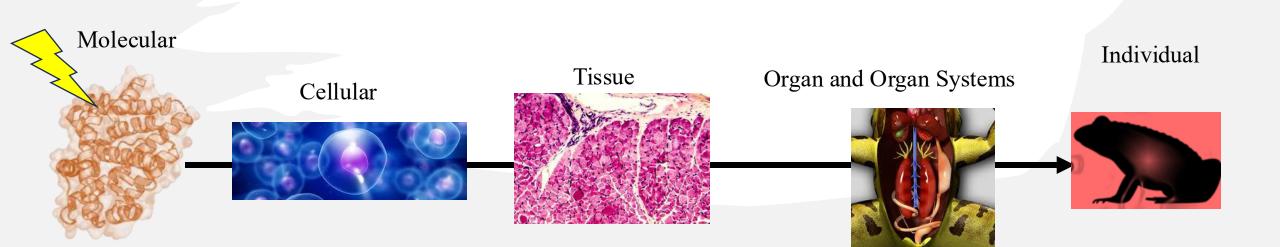


Disease Reproduction Growth Mortality

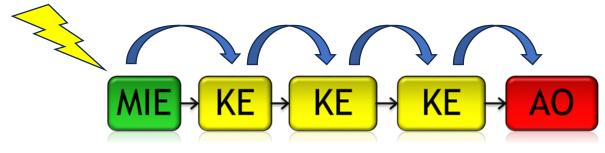
Chemical-Protein Interactions are Important

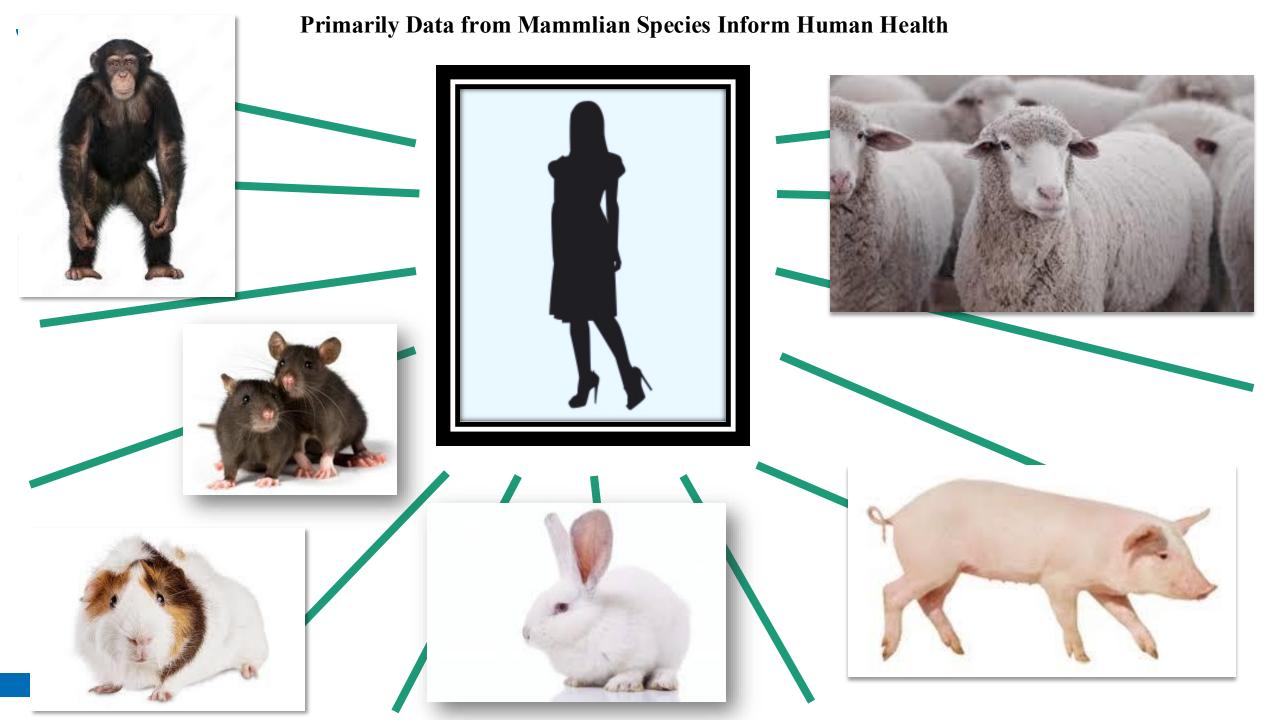

Unintended Chemical Exposure


Chemical Protein Interactions are Important


Unintended Chemical Exposure

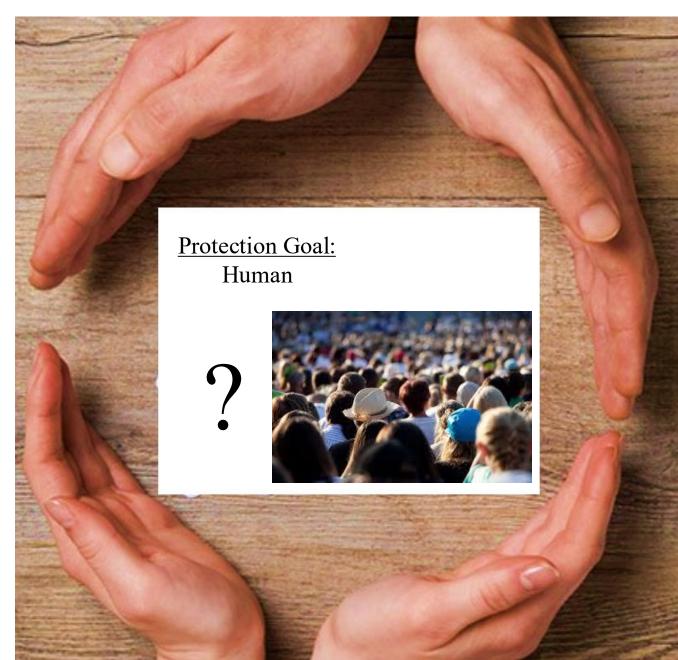
Chemical Protein Interactions are Important


Unintended Chemical Exposure


Chemical-Protein Interactions are Molecular Events that Initiate the Downstream Biological Events in Pathways

Why do we care about this knowledge across species?

Needed for Regulatory Decision-making



Cross Species Extrapolation: Decisions based on available data

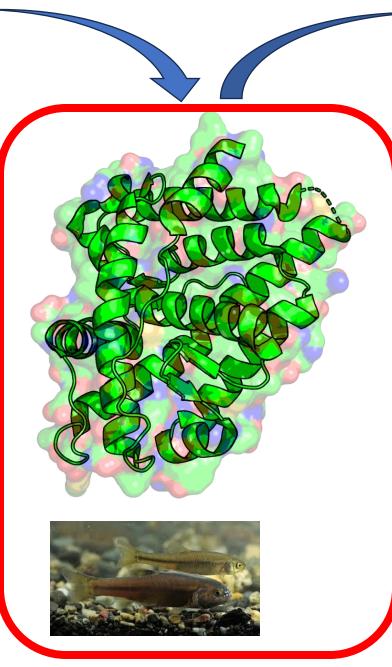
Available Toxicity Data

Ecotoxicology – Model Species

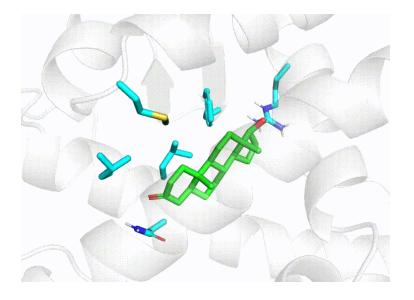
Cross Species Extrapolation: Decisions based on available data

Available Toxicity Data

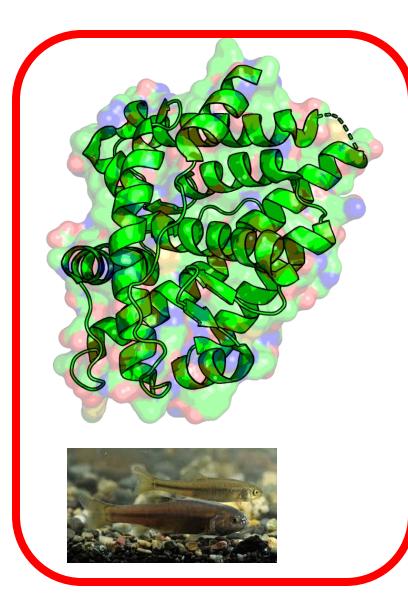
Protection Goal: Amphibia **Safety factors**


Species extrapolation is NOT a new challenge

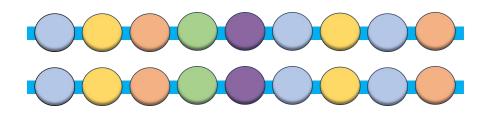
Based on our knowledge of chemical-protein interactions, can we add evidence for extrapolating knowledge across species? **Species Sensitivity Distributions**


Chemical-Protein Interaction

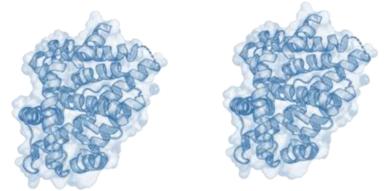
Unintended Chemical Exposure



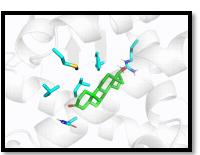
Adverse outcome



Impacts on reproduction


Evaluating Protein Conservation Across Species

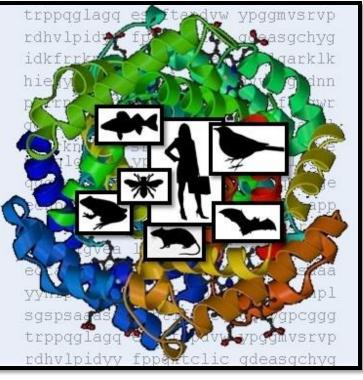

Protein Sequence Conservation



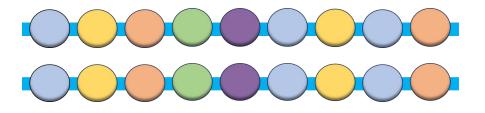
Protein Structure Conservation

Chemical-Protein Interaction Conservation

TOGCATCACA CTAAAATATC CTUUTGTCACE CCATAGOGOGAC


Bioinformatics

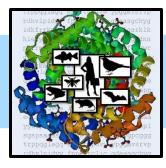
- Combines mathematics, information science, and biology to <u>answer biological questions</u>
- Developing methodology and analysis tools to <u>explore large</u> <u>volumes of biological data</u>
 - Query, extract, store, organize, systematize, annotate, visualize, mine, and interpret complex data
 - Usually pertains to DNA and amino acid sequences


Let the computers do the work

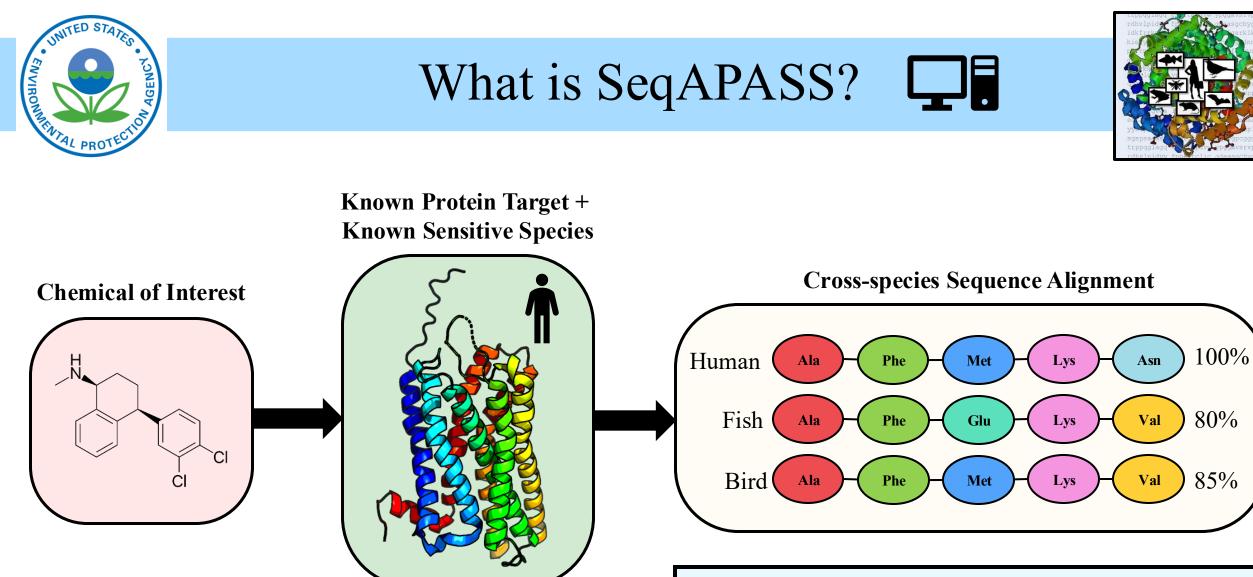
Evaluating Protein Conservation Across Species

<u>Sequence Alignment to</u> <u>Predict Across Species</u> <u>Susceptibility</u> (SeqAPASS)

Protein Sequence Conservation

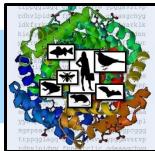


SeqAPASS Evaluate protein conservation for predicting chemical susceptibility across species


$\underline{Seq} uence \underline{A} lignment to \underline{P} redict \underline{A} cross \underline{S} pecies \underline{S} usceptibility \\ (SeqAPASS)$

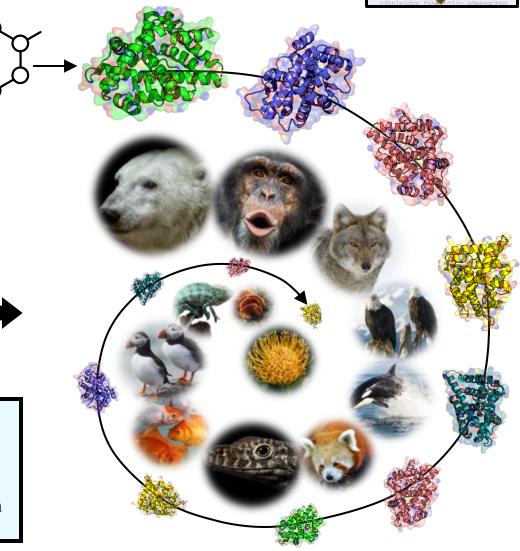
The concept of SeqAPASS was formalized in a 2013 publication that was later followed by a web-based tool release in 2016. It has continued to evolve to this day! (Last week we released v8.1)

		TOXICOLOGICAL SCIENCES, 153(2), 2016, 228-245		Sequence Alignment to Predict A	Across Species Susceptibility (SeqAPASS)	Log out				
Aquatic Toxicology	SOT Society of Toxicology	doi: 10.1093/toxsci/kfw119 Advance Access Publication Date: June 30, 2016			SeqAPASS Run Status View SeqAPASS Reports Settings					
	OXFORD www.toxsci.oxfordjournals.org	Research article		Welcome to SeqAPASS	Version 8.0					
					SeqAPASS Home					
Molecular target sequence similarity			About SegAPASS							
as a basis for species extrapolation	Sequence Alignment to Pred	dict Across Spacios		SeqAPASS User Guide						
		-		Submit Comment/Question or Report a Problem						
to assess the ecological risk of	Susceptibility (SeqAPASS): A	A Web-Based Tool for								
chemicals with known modes of	Addressing the Challenges		Welcome to the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Tool							
	U U	-		The SeqAPASS tool is intended to be used to extrapolate chemical toxicity knowledge/data from one species to others. This extrapolation is termed cross species extrapolation and is based on the current understanding of a chemical-protein or protein-protein interaction in one species and the collection of lines of evidence						
action	Extrapolation of Chemical T	Toxicity		indicating a similar interaction in another species is likely to occur. The results from SeqAPASS provide evidence of protein conservation to be used for predictions: chemical susceptibility or pathway conservation across the diversity of species. This is important as the majority of species will never be tested in the laboratory for toxicity though researchers and regulators are interested in understanding the potential for chemical impacts on all species that have potential for exposure in the						
Carlie A. LaLone ° 은 쩓, Daniel L. Villeneuve °, Lyle D. Burgoon ^b , Christine L. Russom °, Henry W. Helgen ^c , Jason P. Berninger ^d , Joseph E. Tietge °,	Carlie A. LaLone, ^{*,1} Daniel L. Villeneuv Serina L. Robinson, ^{§,2} Joseph A. Swinte			environment. Specifically, the tool takes advantage to be sensitive to a chemical) or a pro generated lines of evidence for conse	of existing knowledge of a chemical causing an effect through a particular protein in a particular species otein involved in an assay where a test species is represented. The protein from that species is queried in evaluon in other species.	(usually a species known the SeqAPASS tool to				
Megan N. Severson ^a , Jenna E. Cavallin ^e , Gerald T. Ankley ^a	Gerald T. Ankley*		J	Note: Necessary input to SeqAPASS	is the combination of a protein and an individual species					

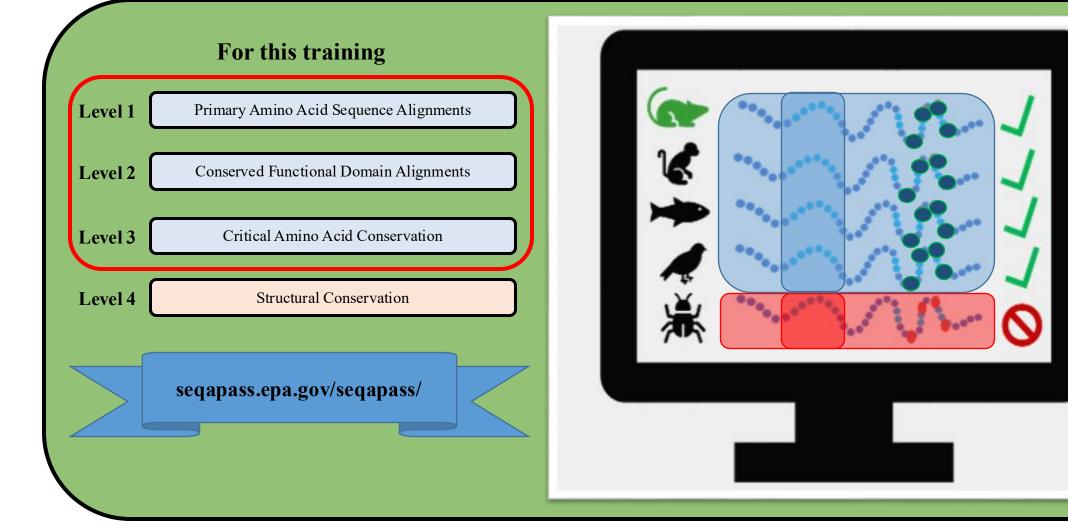

seqapass.epa.gov/seqapass/

Protein sequence similarity (conservation) = shared likelihood of susceptibility to chemical!

Why is SeqAPASS useful?

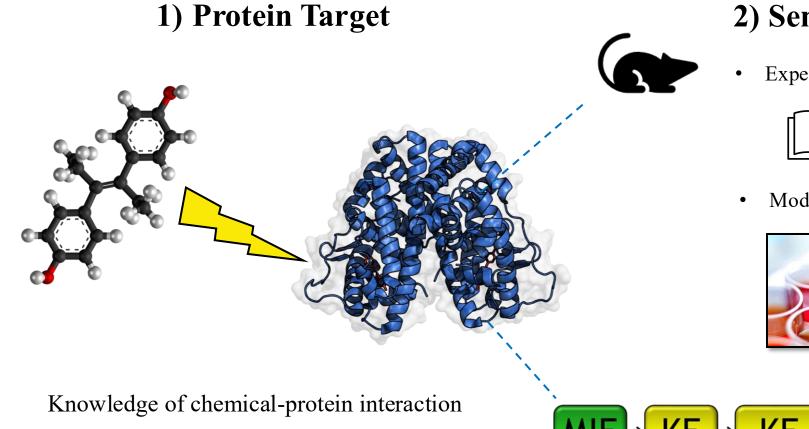


We can *rapidly* compare protein sequences across 100s to 1000s of species to generate predictions of chemical susceptibility, including in threatened or endangered species.


Cross-species Sequence Alignment Analysis

	cov	pid	161							2							
1 KAF1656078.1	100.0%	100.0%		T <mark>AS</mark> IMHL <mark>C</mark>	AI <mark>SLD</mark> R	Y IAI <mark>r</mark>	NPIHH	S <mark>rfn</mark> s	RT <mark>K</mark> AF	A <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGLQ <mark>D</mark> I	<mark>SK</mark> √FI	(K <mark>GS</mark> CL	LV <mark>DDN</mark> FV	'LVG <mark>S</mark>
2 NP_766400.1	99.8%	76.3%		TASIMHLC	AI <mark>SLD</mark> R	YVAI Q	NPIHH	SRFNS	RTKAF	L <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGLQ <mark>D</mark> I)S <mark>K</mark> VFI	EGSCL	LA <mark>DDNF</mark> V	'LI <mark>G</mark> S
3 NP_001268288.1	99.8%	76.1%		TASIMHLC.	AI <mark>SLD</mark> R	YV<mark>AI</mark>Q	NPIHH	SRFNS	RTKAF	L <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGL <mark>QD</mark> I	<mark>SK</mark> VF	EGSCL	LA <mark>DDN</mark> FV	'LI <mark>G</mark> S
4 NP_001005869.1	99.6%	78.4%		T <mark>as</mark> imhl <mark>c</mark>	AISLD <mark>R</mark>	YVAI Q	NPIHH	SRFNS	RTKAF	L <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGLQ <mark>D</mark> I	<mark>SK</mark> VFI	EGSCL	LA <mark>DDNF</mark> V	'LI <mark>G</mark> S
5 NP_999382.1	99.6%	77.8%		TASIMHLC	ISLD R	YVAI Q	NPIHH	RRFNS	RTKAF	L <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGLQ <mark>D</mark>	<mark>SK</mark> VF	EGSCL	LA <mark>DDNF</mark> V	'LI <mark>G</mark> S
6 NP_001365853.1	99.8%	79.4%		TASIMHLC.	AI <mark>SLD</mark> R	YVAI Q	NPIHH	SRENS	RTKAF	L <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGL <mark>QD</mark> I	<mark>SK</mark> VF	EGSCL	LA <mark>DDN</mark> FV	'LI <mark>G</mark> S
7 NP_001028138.1	99.8%	79.4%		T <mark>AS</mark> IMHL <mark>C</mark>	\ISLD R	YVAI Q	NPIHH	SRFNS	RTKAF	L <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGLQ <mark>D</mark> I)S <mark>K</mark> VF	EGSCL	LA <mark>DDNF</mark> V	LIGS
consensus/100%				TASIMHLC.	AI <mark>SLD</mark> R	Y <mark>lAI</mark> p	NPIHH	PRFNS	RTKAF	h <mark>K</mark> IIAVh	TISVGI	SMPIP\	/FGL <mark>QD</mark> I	<mark>SK</mark> VF	c <mark>GS</mark> CL	Ls <mark>DDN</mark> FV	'L1GS
consensus/90%				T <mark>AS</mark> IMHL <mark>C</mark>	ISLD R	Y1AIp	NPIHH	PRFNS	RTKAF	h <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGLQDI	<mark>SK</mark> √F	c <mark>GS</mark> CL	Ls <mark>DDNF</mark> V	'L1GS
consensus/80%				T <mark>ASIMHLC</mark>	AISLD <mark>R</mark>	VAIQ	NPIHH	SRFNS	RTKAF	L <mark>K</mark> IIAVW	TISVGI	SMPIP\	/FGLQDI	<mark>SK</mark> VF	EGSCL	LADDNFV	LIGS
consensus/70%				TASIMHLC.	AISLD <mark>R</mark>	VAIQ	NPIHH	S <mark>RFN</mark> S	RTKAF	L <mark>K</mark> IIAV	TISVGI	SMPIP\	/FGLQDI	<mark>SK</mark> √FI	EGSCL	LA <mark>DDN</mark> FV	'LIG <mark>S</mark>

- Sequence data sourced from public databases
- SeqAPASS is publicly available
- Designed for a diversity of end users: researchers, regulators, decision makers
- Supports existing predictions and hypothesis generation for guiding future research


Gather Lines of Evidence Toward Protein Conservation

What information is required for a SeqAPASS query?

2) Sensitive Species

• Experimental evidence

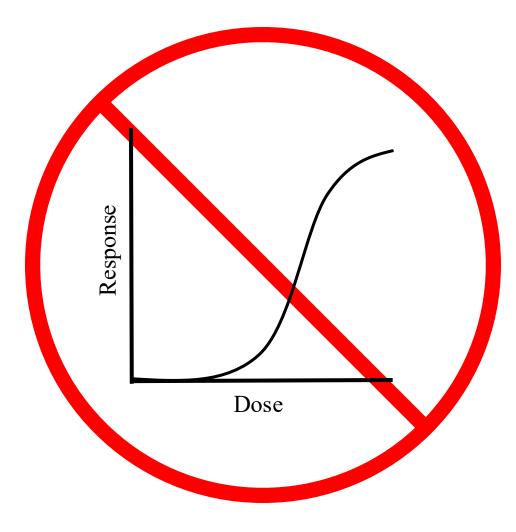
• Model organism from *in vitro* assay

٢F

Ideally, with connections to an established AOP

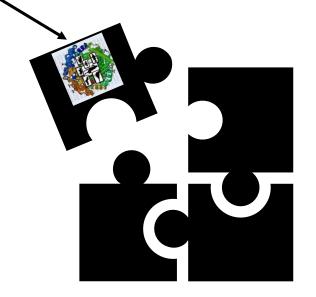
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

____ **1_1**._1


Log out

Home			C Bup Statua		C Baparta Sa	ttingo						
Home	Request SeqAPASS Run	SeqAPAS	SS Run Status	View SeqAPAS	s Reports Se	ttings						
Welcome	to SeqAPASS		Vers	ion 6.1		Logged in as: Peter Schumann						
SeqAPASS Home												
About Se	eqAPASS											
SeqAPASS User Guide												
Submit Comment/Question or Report a Problem 🕖												
4	05/15/2019 10:45 AM	3.2	2.8.1	02/28/2019	12/08/2016	C	07/09/2010	0.75				
3	03/04/2019 05:54 PM	3.1	2.6.0	10/25/2017	12/08/2016	C	07/09/2010	0.75				
3	03/10/2018 02:12 AM	3.0	2.6.0	10/25/2017	12/08/2016		07/09/2010	0.75				
2	05/24/2017 06:59 PM	2.0	2.5.0	01/04/2017	02/05/2016	C	07/09/2010	0.75				
1	01/27/2016 08:00 PM	1.0	2.3.0	11/09/2016	04/25/2015	C	07/09/2010	0.75				

Threatened/Endangered Species Data obtained from EPA ECOTOX on Feb. 2, 2022

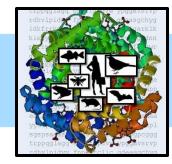


SeqAPASS *does not* predict the degree of sensitivity/susceptibility

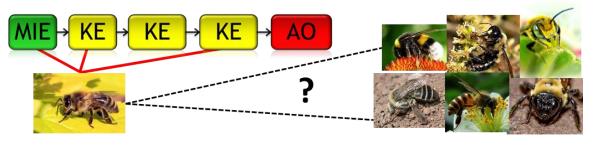
Factors that make a species sensitive:

- Exposure
- Dose
- Toxicokinetics
- Target receptor availability
- Life stage
- Life history
- etc.
- etc.

Applications of SeqAPASS

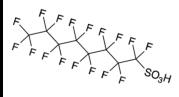

SUN

MON TUE NED


NUS SAT

Case Studies

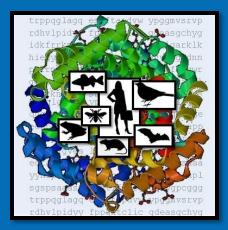
- Extrapolate adverse outcome pathway knowledge across species
 - Define the taxonomic domain of applicability
 - Apis vs Non-Apis bees



- Extrapolate high throughput screening data
 - Chemicals that target human estrogen receptor alpha, androgen receptor, steroidogenic enzymes, thyroid axis proteins
 - All ToxCast Assay targets

• Predict relative intrinsic susceptibility

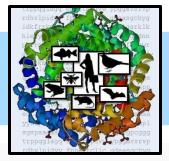
- Pesticides
- Endangered Species Act
- Derivation of Aquatic Life Criteria
- Predict chemical bioaccumulation across species
 - Chemicals of concern: PFAS
- Generate research hypotheses Strobilurin fungicides
- **Prioritization strategies** Pharmaceuticals



Training Course – SeqAPASS Level 1: Primary sequence similarity and ortholog candidate identification

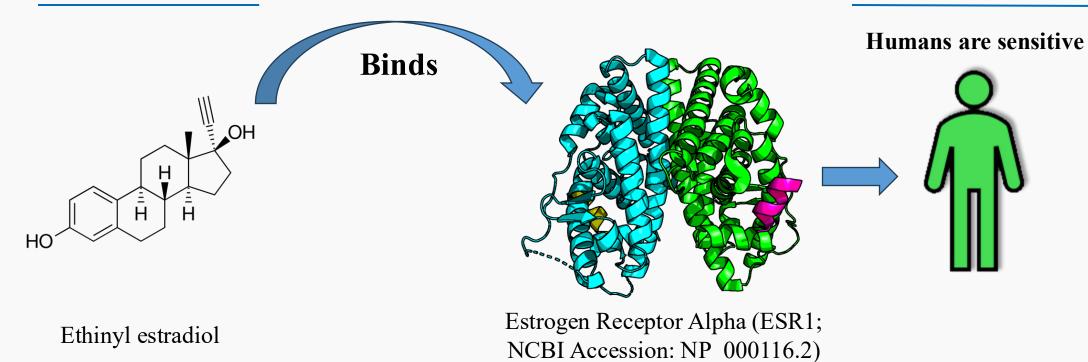
Instructors:

Peter Schumann, MS (US EPA) Carlie A. LaLone, PhD (US EPA)



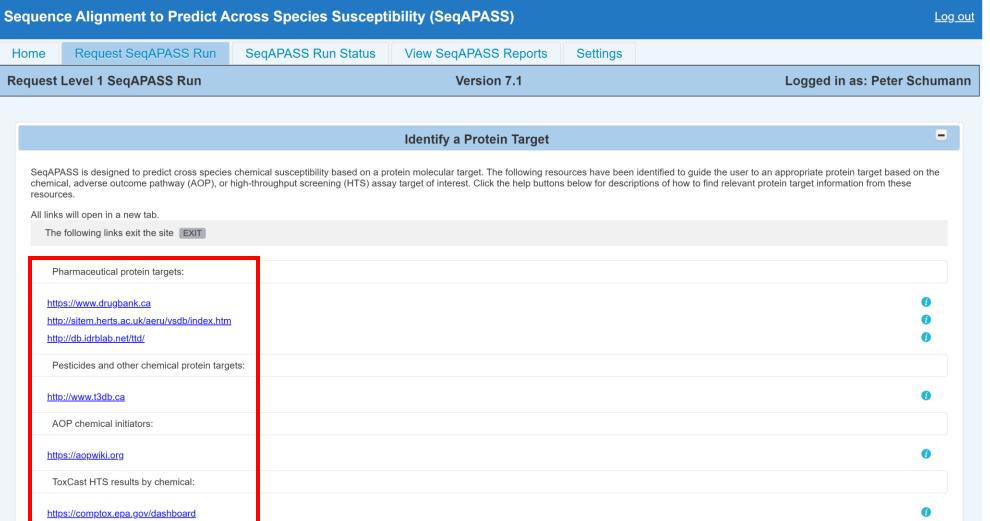
Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA



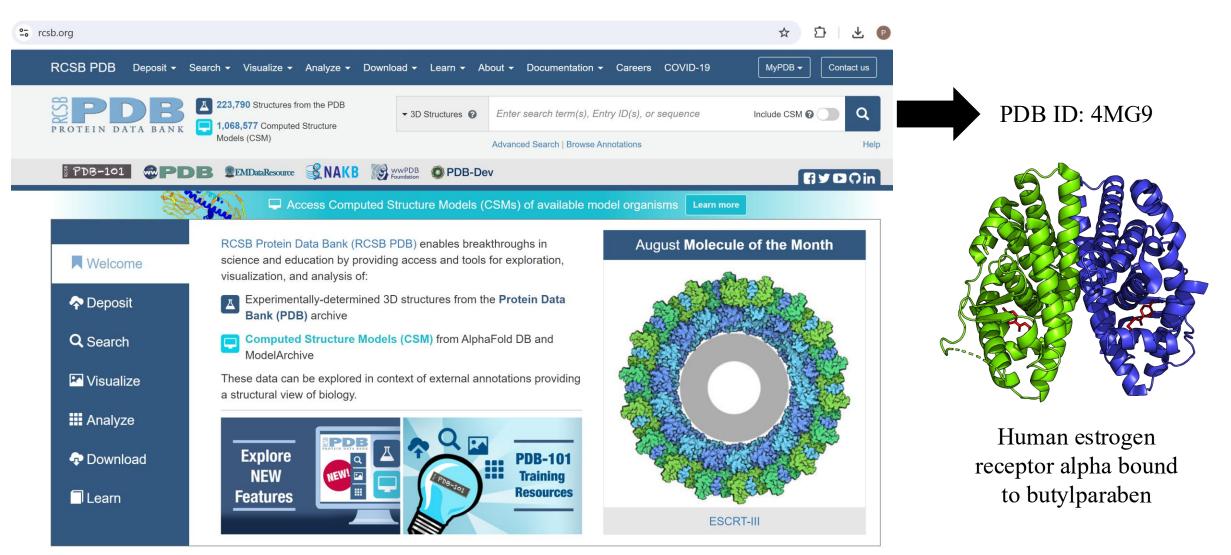
Query Formulation

1) **Protein Target**


2) Sensitive species

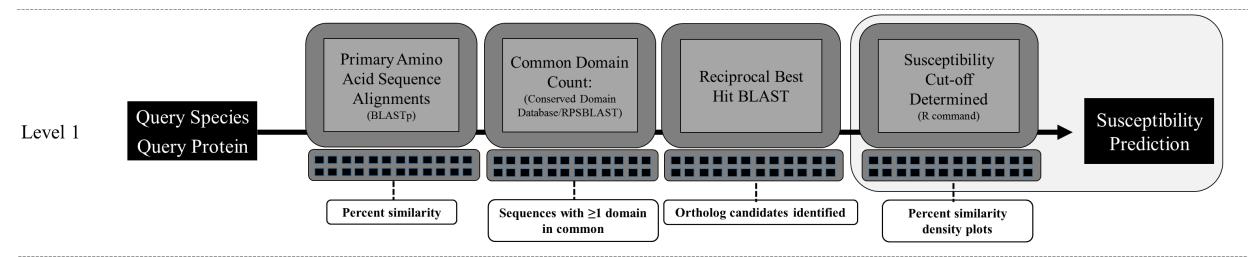
Question: What other species might be *susceptible* to ethinyl estradiol?

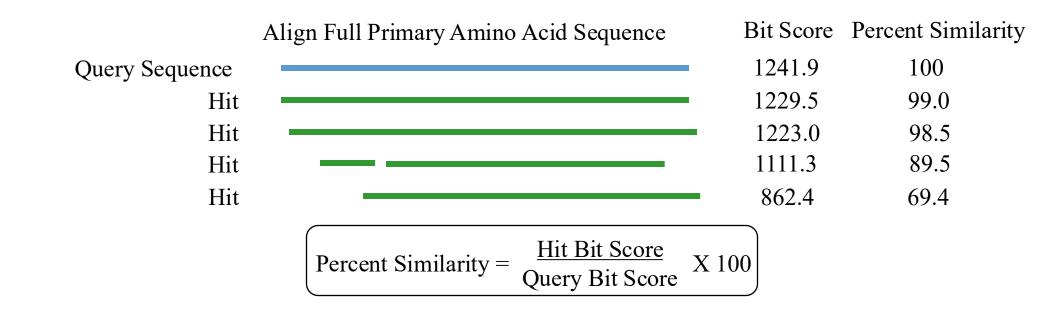
Target Protein Identification



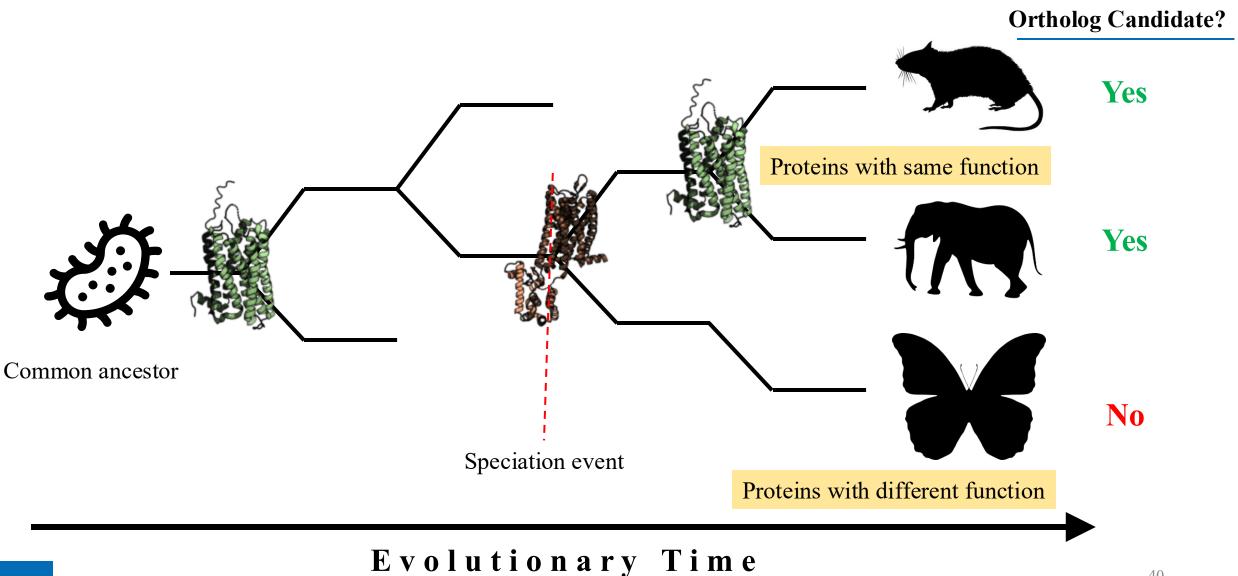
Target Identification cont.

		🗞 - Туре уоц	Jr search
A Mechanism of action Identification Pharmacology	The monoaminergic hypothesis of depression emerged in 1965 and linked depredysfunction of neurotransmitters such as noradrenaline and serotonin. ¹³ Indee serotonin have been observed in the cerebrospinal fluid of patients diagnosed was a result of this hypothesis, drugs that modulate levels of serotonin such as fl developed. ¹³	ed, low levels of with depression. ³	
ndication			
ssociated Conditions	Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) and as the name su it's therapeutic effect by inhibiting the presynaptic reuptake of the neurotrans		
ssociated Therapies	As a result, levels of 5-hydroxytryptamine (5-HT) are increased in various parts of		
ontraindications &	Further, fluoxetine has high affinity for 5-HT transporters, weak affinity for norad		
ackbox Warnings	transporters and no affinity for dopamine transporters indicating that it is 5-HT	selective. ¹³	
harmacodynamics	Fluoxetine interacts to a degree with the 5-HT _{2C} receptor and it has been sugge	ested that through	
Blackbox Warnings Pharmacodynamics Mechanism of action Absorption		ested that through	
harmacodynamics lechanism of action bsorption olume of	Fluoxetine interacts to a degree with the 5-HT _{2C} receptor and it has been sugge this mechanism, it is able to increase noradrenaline and dopamine levels in the cortex. ¹³	ested that through e prefrontal	ORCANISM
narmacodynamics echanism of action osorption blume of stribution	Fluoxetine interacts to a degree with the 5-HT _{2C} receptor and it has been sugge this mechanism, it is able to increase noradrenaline and dopamine levels in the cortex. ¹³	ested that through e prefrontal ACTIONS	ORGANISM
armacodynamics echanism of action sorption lume of stribution otein binding	Fluoxetine interacts to a degree with the 5-HT _{2C} receptor and it has been sugget this mechanism, it is able to increase noradrenaline and dopamine levels in the cortex. ¹³ TARGET Sodium-dependent serotonin transporter	ested that through e prefrontal	ORGANISM Humans
armacodynamics echanism of action osorption olume of stribution otein binding etabolism	Fluoxetine interacts to a degree with the 5-HT _{2C} receptor and it has been sugge this mechanism, it is able to increase noradrenaline and dopamine levels in the cortex. ¹³	ested that through e prefrontal ACTIONS	
aarmacodynamics echanism of action poorption olume of stribution otein binding etabolism pute of elimination	Fluoxetine interacts to a degree with the 5-HT _{2C} receptor and it has been sugget this mechanism, it is able to increase noradrenaline and dopamine levels in the cortex. ¹³ TARGET Sodium-dependent serotonin transporter	ested that through e prefrontal ACTIONS inhibitor	Humans
aarmacodynamics echanism of action soorption ulume of stribution otein binding etabolism oute of elimination	Fluoxetine interacts to a degree with the 5-HT _{2C} receptor and it has been sugget this mechanism, it is able to increase noradrenaline and dopamine levels in the cortex. ¹³ TARGET Sodium-dependent serotonin transporter 5-hydroxytryptamine receptor 2C	ested that through e prefrontal ACTIONS inhibitor antagonist	Humans Humans
narmacodynamics echanism of action psorption plume of	 Fluoxetine interacts to a degree with the 5-HT_{2C} receptor and it has been sugget this mechanism, it is able to increase noradrenaline and dopamine levels in the cortex.¹³ TARGET Sodium-dependent serotonin transporter 5-hydroxytryptamine receptor 2C Neuronal acetylcholine receptor subunit alpha-2 	ested that through e prefrontal ACTIONS inhibitor antagonist antagonist	Humans Humans Humans
harmacodynamics echanism of action bsorption blume of stribution otein binding etabolism bute of elimination alf-life earance	 Fluoxetine interacts to a degree with the 5-HT_{2C} receptor and it has been sugget this mechanism, it is able to increase noradrenaline and dopamine levels in the cortex.¹³ TARGET Sodium-dependent serotonin transporter S-hydroxytryptamine receptor 2C Neuronal acetylcholine receptor subunit alpha-2 Neuronal acetylcholine receptor subunit alpha-3 	ested that through e prefrontal ACTIONS inhibitor antagonist antagonist antagonist	Humans Humans Humans Humans




Target Identification cont.

Level 1: Primary Amino Acid Sequence Comparisons



39

What is a protein "ortholog"?

Ortholog Candidates Set the Similarity Cutoff

Common Name	Ortholog Candidate	Cut-off	Percent Similarity	y
Human	Y	33.15	100	
Florida manatee	Y	33.15	98.8	
Mallard	Y	33.15	82.29	Susceptibility Prediction = Yes
Rock pigeon	Y	33.15	80.93	
Green anole	Y	33.15	80.65	
Pacific transparent sea squirt	Y	33.15	_{33.15}	Lowest % Similarity that is still an ortholog
Yesso scallop	N	33.15	32.87	
Purple sea urchin	Ν	33.15	26.05	Sussentibility Dradiction - No
Human whipworm	Ν	33.15	23.53	Susceptibility Prediction = No
Bed bug	Ν	33.15	21.62	

Even if the % sequence similarity is low, the protein *function* can still be conserved!

 \rightarrow Chemicals can disrupt or alter protein function

Level 1 Query Protein Information

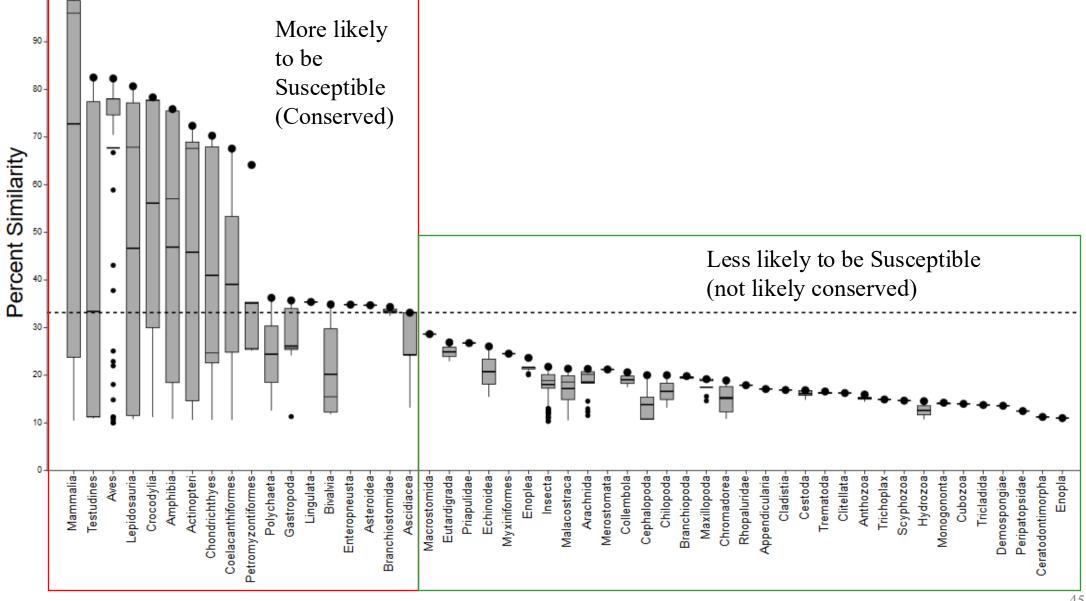
Hit proteins are identified for the following query protein. Use the main button to go back to the SeqAPASS Reports list.

SeqAPASS ID: 3390	NP_000116.2 EXIT	Ortholog Co	ount: 712	Protein and Taxonomy Data: 04/25/2022		
Query Species: Homo sapiens					BLAST Version: 2.13.0)
Query Protein: estrogen receptor	isoform 1				Software Version: 6.1	
Susceptibility Cu	it-off		Level 2	0 🔹	Level 3	() ±
4.0 3.5 3.0 2.2 1.5 1.0 0.5 0.0 0 10 20 30 40 50 60 Percent similarity Cutoff Setting This will open in a sep	gs	Ref	resh Level 2 and 3 runs			
Primary Report Set	tings 🛛 🚺 🛨					
Visualization	1 +					

Level 1 SeqAPASS Data

Search: Enter keyword									
Data Version	NCBI Accession \$	Protein Count ≎	Species Tax ID ≎	Taxonomic Group ≎	Filtered Taxonomic Group ≎	Scientific Name ≎	Common Name ≎	Protein Name 🗢	
7	NP_000116.2	2716670	<u>9606</u>	Mammalia	Mammalia	Homo sapiens	Human	estrogen receptor isoform 1	
7	XP_003311596.1	170461	<u>9598</u>	Mammalia	Mammalia	Pan troglodytes	Chimpanzee	estrogen receptor isoform X2	
7	XP_030868114.1	52137	<u>9595</u>	Mammalia	Mammalia	Gorilla gorilla gorilla	Western lowland gorilla	estrogen receptor isoform X2	
7	<u>ABY64717.1</u>	1721	<u>9593</u>	Mammalia	Mammalia	<u>Gorilla gorilla</u>	Western gorilla	estrogen receptor alpha	
7	XP_003811544.1	71986	<u>9597</u>	Mammalia	Mammalia	Pan paniscus	Pygmy chimpanzee	estrogen receptor	
7	<u>ABY64718.1</u>	1611	<u>9600</u>	Mammalia	Mammalia	Pongo pygmaeus	Bornean orangutan	estrogen receptor alpha	
7	XP_002817538.1	140470	<u>9601</u>	Mammalia	Mammalia	Pongo abelii	Sumatran orangutan	estrogen receptor isoform X2	
7	XP_011751932.1	68729	<u>9545</u>	Mammalia	Mammalia	Macaca nemestrina	Pig-tailed macaque	estrogen receptor isoform X2	
7	XP_005552209.1	125408	<u>9541</u>	Mammalia	Mammalia	Macaca fascicularis	Crab-eating macaque	estrogen receptor isoform X1	
7	XP_014992596.1	178339	<u>9544</u>	Mammalia	Mammalia	Macaca mulatta	Rhesus monkey	estrogen receptor isoform X2	

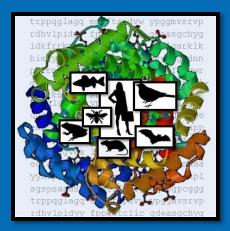
(1 of 147)


	Search: Enter keyword												
Hit Length ≎	Identity \$	Positives ≎	Evalue \$	BLASTp Bitscore ≎	Ortholog Candidate ≎	Ortholog Count	Cut-off ≎	Common Domain Count ≎	Percent Similarity ≎	Susceptibility Prediction ≎	Analysis Completed 😂	Eukaryote ≎	ECOTOX
595	595	595	0.000E0	1241.87	Y	712	34.43	78	100.00	Y	2022 06 08 11:11:58	Y	-
595	590	592	0.000E0	1229.54	Y	712	34.43	75	99.01	Y	2022 06 08 11:11:58	Y	-
595	590	592	0.000E0	1229.54	Y	712	34.43	75	99.01	Y	2022 06 08 11:11:58	Y	-
595	590	592	0.000E0	1229.54	Y	712	34.43	75	99.01	Y	2022 06 08 11:11:58	Y	-
595	589	592	0.000E0	1228.00	Y	712	34.43	75	98.88	Y	2022 06 08 11:11:58	Y	-
595	589	591	0.000E0	1227.62	Y	712	34.43	75	98.85	Y	2022 06 08 11:11:58	Y	-
595	589	591	0.000E0	1227.62	Y	712	34.43	75	98.85	Y	2022 06 08 11:11:58	Y	-
595	588	592	0.000E0	1227.23	Y	712	34.43	75	98.82	Y	2022 06 08 11:11:58	Y	-
595	588	592	0.000E0	1227.23	Y	712	34.43	75	98.82	Y	2022 06 08 11:11:58	Y	-
595	588	592	0.000E0	1227.23	Y	712	34.43	75	98.82	Y	2022 06 08 11:11:58	Y	-

(1 of 150) 12 3 4 5 6 7 8 9 10 P 1 10 Download Table:

100

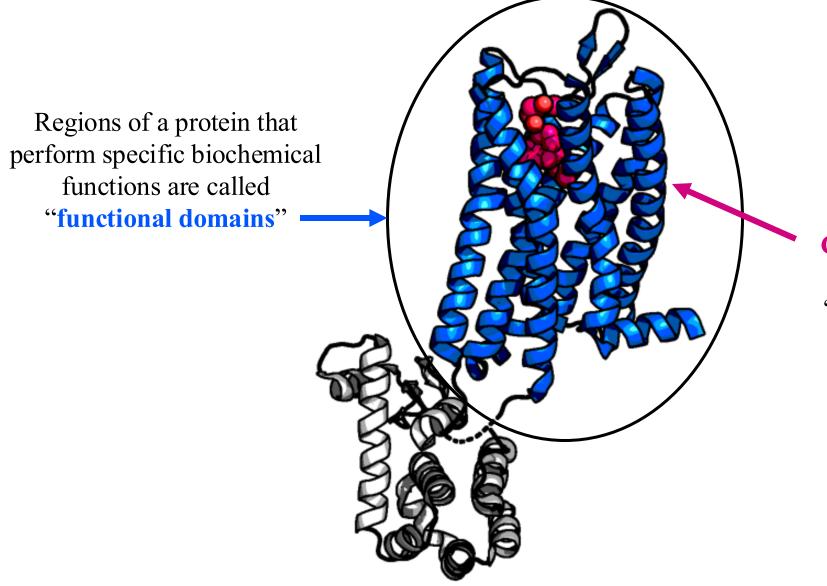
Visualization of Level 1 Results



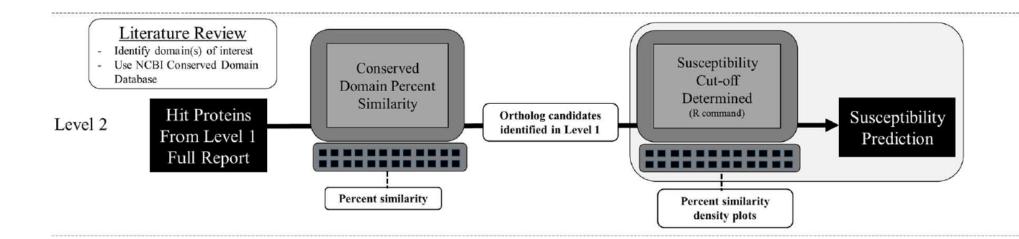
Training Course – SeqAPASS Level 2: Conservation of Functional Domains

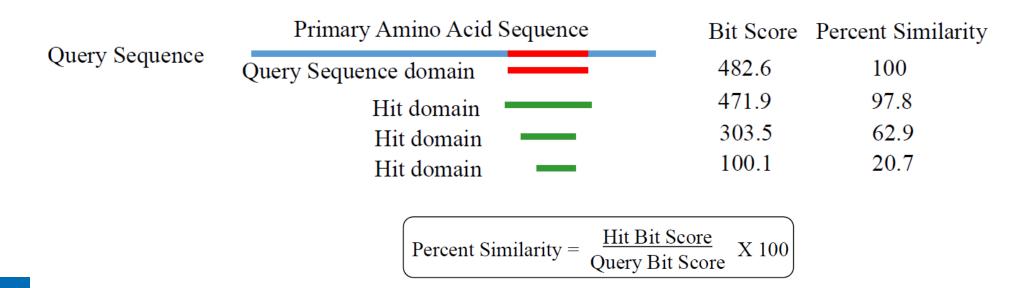
Instructors:

Peter Schumann, MS (US EPA) Carlie A. LaLone, PhD (US EPA)



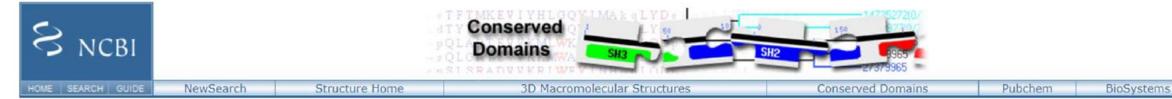
Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA

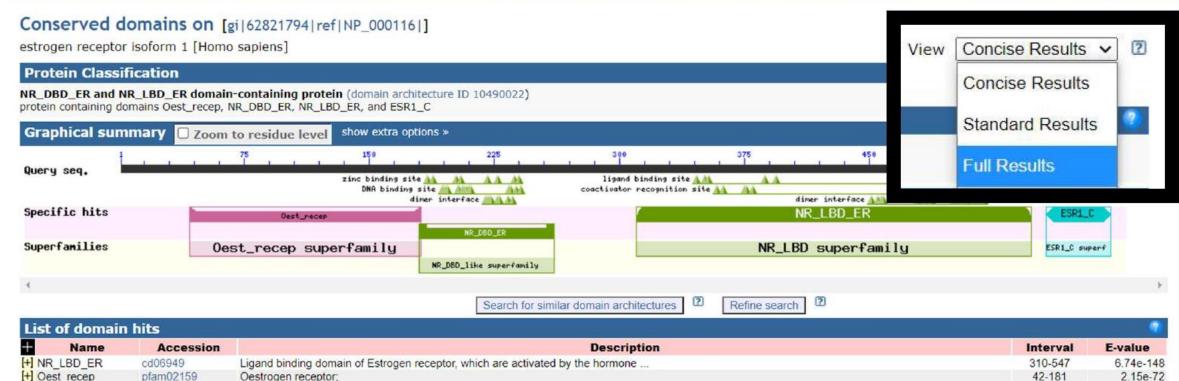

Protein function is structurally localized



Chemicals often bind to a functional domain (e.g., "ligand binding domain")

Level 2: Functional domain comparisons




S NCBI Resources 🕑 How To 🕑		Sign in to NCBI
Conserved Conserved Domains Advanced		Search Help
COVID-19 Information Public health information (CDC) Research information	tion (NIH) SARS-CoV-2 data (NCBI) Prevention and t	reatment information (HHS) Español
	CDD	
	The Conserved Domain Database is a resource for domain models includes a set curated by NCBI, w sequence/structure/function relationships.	or the annotation of functional units in proteins. Its collection of hich utilizes 3D structure to provide insights into
Using CDD	CDD Tools	Other Resources
Quick Start Guide	Overview of CDD Resources	Structure Group Home Page
How To Guides	CD-Search	Entrez Structure (Molecular Modeling Database)
Help	Batch CD-Search	Entrez Gene
FTP	CDART (domain architectures)	Entrez Protein
News	SPARCLE (protein labeling engine)	
Publications	BLAST	

Sequen	ce Alignment to Predict Ac	ross Species Susceptibi		Log out			
Home	Request SeqAPASS Run	SeqAPASS Run Status	View SeqAPASS Reports	Settings			
SeqAPA	SS Reports		,	Version 6.1			Logged in as: Peter Schumann
Main	Level 1 DS Report						
			Level 1 Que	ry Protein Info	rmation		
Seq	APASS ID: 2988 Query Acc ary Species: Homo sapiens ary Protein: estrogen receptor isoform 1 Susceptibility Primary Report S Visualizatio	Cut-off	Ortholog Count: 712	BLAST Vers Software Ve Level 2 evel 2 Query Domain Database EXIT mains ain Run View Level 2 Data /iew ain - • (i	rsion: 6.1	Level 3	

180-261

556-595

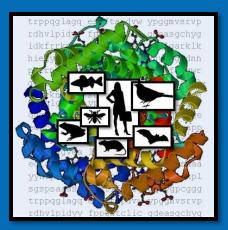
6.64e-63

3.28e-19

T Uest_letep	plantoz 159	Cestrogen receptor,	
[+] NR_DBD_ER	cd07171	DNA-binding domain of estrogen receptors (ER) is composed of two C4-type zinc fingers;	
[+] ESR1_C	pfam12743	Oestrogen-type nuclear receptor final C-terminal; This is the very C-terminal region of a	

References:

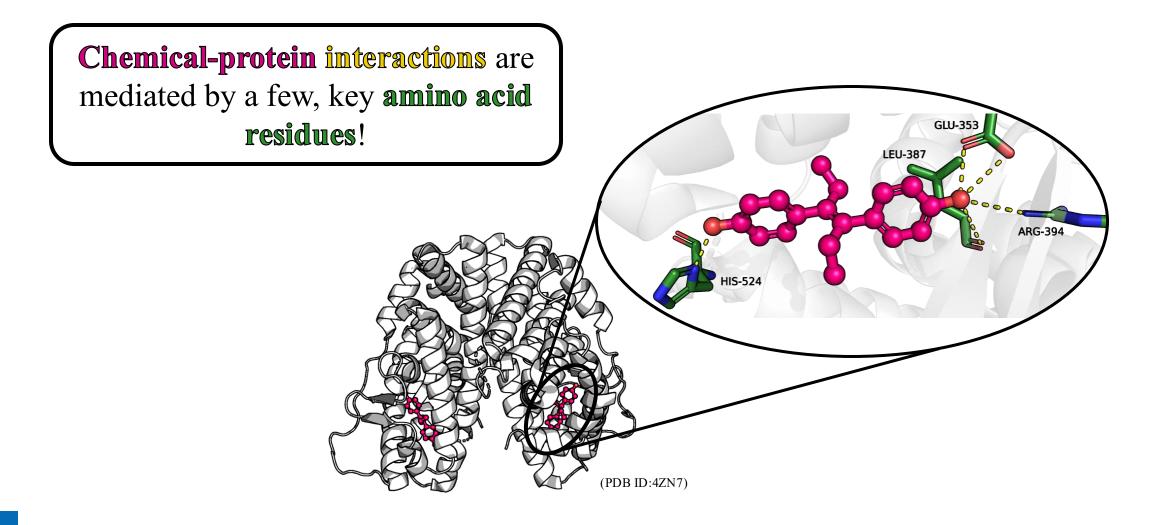
W Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.


Query seq. zinc binding site MA MAAM ligand binding site A 14 DNA binding site A coactivator recognition site MA 44 (3.43 dimer interface Att dimer interface Specific hits NR_LBD_ER ESR1_C Oest_recep NR_DBD_ER ZnF_C4 i cd06949 Non-specific NR_DBD_ER_like hits NR_DBD_like [Specific hit, evalue = 6.74e-NR_DBD_ERR 148]cd06949, Ligand binding domain of NR_DBD_Lrh-1_like Estrogen receptor, which are activated NR_DBD_HNF48 by the hormone 17beta-estradiol NR_DBD_VDR_like (estrogen) ;The ligand binding domain NR_DED_RAR (LBD) of Estrogen receptor (ER): NR_DBD_DHR4_like Estrogen receptor, a member of nuclear receptor superfamily, is activated by the NR_DED_NGFI-B hormone estrogen. Estrogen regulates many physiological NR_DBD_TR processes including reproduction, bone integrity, NR_DBD_GR_PR cardiovascular health, and behavior. The main mechanism NR_DED_TLX of action of the estrogen receptor is as a transcription NR_DOD_PNR_like_1 factor by binding to the estrogen response element of NR_DBD_GCNF_like target genes upon activation by estrogen and then NR_DED_AR recruiting coactivator proteins which are responsible for NR_DBD_GR_1ike No LUU LINT " NR_DBD_PNR_like NR_D8D_DrE78_like NR_LBD_T1x_PNR_like NR_DBD_COUP_TF NR_LBD_RAR NR_DBD_ROR NR_LBD_COUP-TF NR_DBD_TR2_like NR_LBD_F1 NR_DBD_VDR NR_LBD_VDR NR_DBD_EcR_like NR LBD LXR NR_DED_RXR NR_LBD_REV_ERB NR_DBD_CAR NR_LBD_EcR NR_DBD_PNR_like_2 NR LBD TR2 like NR_DBD_Ppar NR_LBD_D+E78_1ik 2080_NR_0802 NR_LBD_ROR_like NR_DBD_REV_ERB NR_LBD_Sex_1_like NR_DBD_PNR NR_LBD_PPAR 2080_NR_0801 NR LBD SHP NR_DBD_LXR NR_LBD_Fxr NR_DBD_Ppar_like NR_DED_PXR NR_DBD_EcR NR_DBD_FXR Superfamilies Oest_recep superfamily NR_LBD superfamily ESR1_C superf NR_DBD_like superfamily

Training Course – SeqAPASS Level 3: Key amino acid comparison

Instructors:

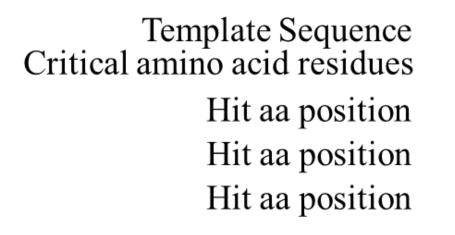
Peter Schumann, MS (US EPA) Carlie A. LaLone, PhD (US EPA)

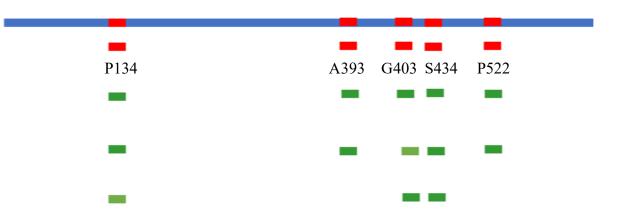


Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA

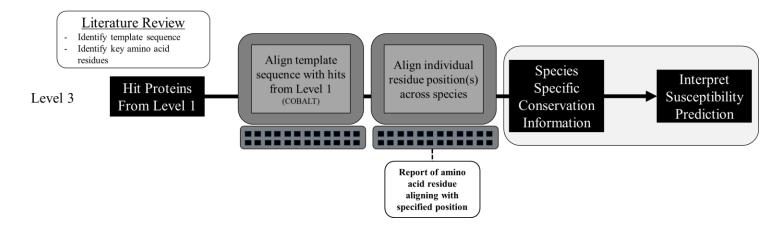
Evaluating the Conservation of Key Protein Residues

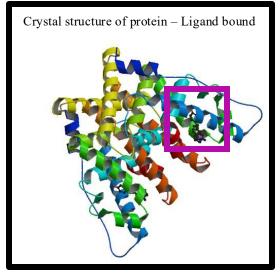


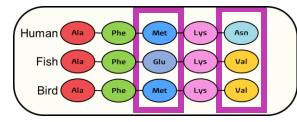


Level 3: Individual Amino Acid Residue Comparison

Information needed for Level 3 query


- 1. Template Species/Sequence
- 2. Identified Critical Amino Acids and positions of amino acids in template

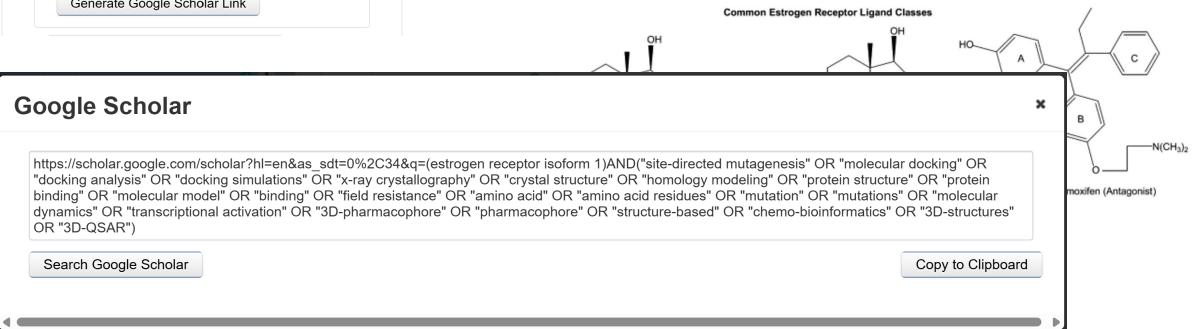




Level 3: Individual Amino Acid Residue Comparison

Amino acid residues that interact with the chemical

Where can I find this information?


- Literature Review
 - Types of studies:
 - Site-directed mutagenesis
 - Field resistance (pesticides)
 - Studies of x-ray crystallography
 - Homology modeling

Level 3	3	i -
- Reference Explorer ()		
Additional Names:	_	
Add Protein Name		
estrogen receptor isoforn	n 1	
Remove Selected Protein	Restore Default Proteins	
Generate Google Scho	lar Link	

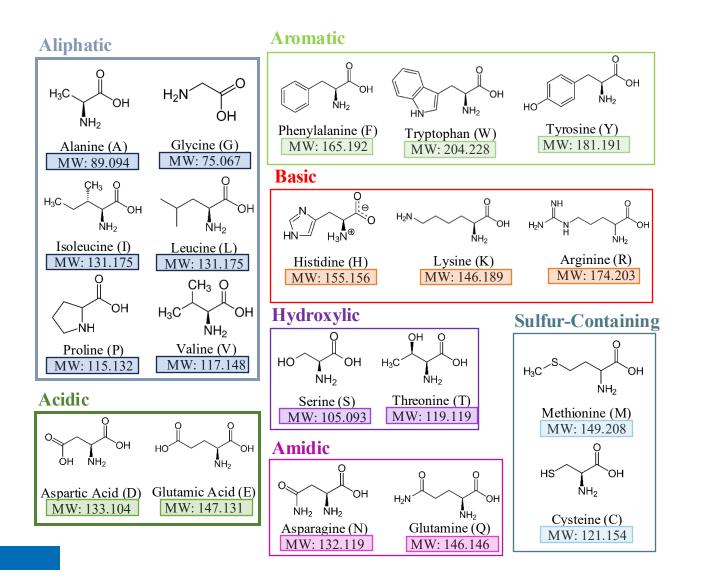

3. Results and discussion

Fig. 1 illustrates the chemical structures of the different classes of ER ligands used in this study with their pharmacophoric elements highlighted. An examination of these structures show that virtually all ligands designed to date incorporate at least an A-ring mimic. From the crystal structure 1ERE, the natural estrogen 17 β -estradiol interacts with ER α via a hydrogen-bonding network formed from the hydroxy group of the A-ring interacting with ARG394, GLU353 and a single water molecule. The hydroxy group of the D-ring forms a hydrogen bond with HIS524. These hydrogen-bonding interactions form the basis of the favorable binding interaction of 17 β -estradiol with ER α and thus are the core elements for a pharmacophoric model of the ER α binding pocket.

Level 3: Continued

SeqAPASS can **AUTOMATICALLY** predict whether an amino acid difference is likely to change protein-chemical interaction.

- Automated Prediction
- Evaluated based on Rules:
 - Same side chain class as query (Y/N)?
 - Size 30g/mol or less from query (Y/N)?

• If 2 "N" responses for ≥1 key amino acids then SeqAPASS predicts susceptibility of that species will differ from the query species.

Level 3: Continued

To provide conservative predictions, two "No" matches for one or more amino acids are required for SeqAPASS to predict that the species differ in susceptibility.

			Tyr - Y	Yes/No		Yes/No		Yes/No	Yes/No
Common Name 0	Similar Susceptibility as Template ©	Position 1	Amino Acid 1	Direct Match 1	Side Chain 1	Side Chain Match 1	MW 1	MW Match 1	Total Match 1
Mouse protein	Y	4660	Y	Y	Aromatic	Y	181.191	Y	Y
Human protein	Y	4637	Y	Y	Aromatic	Y	181.191	Y	Y
Bird protein	Y	4857	Y	Y	Aromatic	Y	181.191	Y	Y
Turtle protein	N	4324	М	N	Sulfur-Containing	Ν	149.208	N	N
Frog protein	N	4559	М	N	Sulfur-Containing	Ν	149.208	N	N
Fish protein	Ν	4456	М	N	Sulfur-Containing	Ν	149.208	N	N
Insect protein	Y	4422	F	N	Aromatic	Y	165.192	Y	Y

Level 3: Visualization

Heat Map Visualization!

Simple report:

Total Match Partial Match Susceptible Yes Not a Match Susceptible No		
Common Name	Similar Susceptibility	Amino Acid 1
Mouse protein	Y	4660Y
Human protein	Y	4637Y
Bird protein	Y	4657Y
Turtle protein	N	4324M
Frog protein	N	4559M
Fish protein	N	4456M
Insect protein	Y	4422F

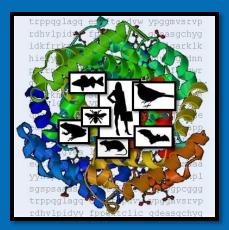
Customizable:

- Common/scientific name
- Ortholog candidates
- Endangered species
- Threatened species
- Common model organisms
- Amino acid information displayed

Level 3: Visualization

Heat Map Visualization!

Full report:


Match Susceptible Yes Not a Match Susceptible No					
Common Name	Similar Susceptibility	Amino Acid 1	Side Chain 1	MW 1	Total Match 1
Mouse protein	Y	4660Y	Aromatic	181.191	Y
Human protein	Y	4637Y	Aromatic	181.191	Y
Bird protein	Y	4657Y	Aromatic	181.191	Y
Turtle protein	N	4324M	Sulfur-Containing	149.208	N
Frog protein	N	4559M	Sulfur-Containing	149.208	N
Fish protein	N	4456M	Sulfur-Containing	149.208	N
Insect protein	Y	4422F	Aromatic	165.192	Y

Training Course - SeqAPASS: Decision Summary Report

Instructors:

Peter Schumann, MS (US EPA) Carlie A. LaLone, PhD (US EPA)

Office of Research and Development Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA

Decision Summary (DS) Report

Organize data

Can contain one Level 1, multiple Level 2, and one Level 3 run(s)

Push Level 1 To DS Report

Customized display for PDF

Provides manuscript ready visualizations

Final Decision Summary Report								
Species	Protein	Level 1 Susceptible (Y/N)	(310) cd06949, NR_LBD_ER, Ligand binding domain of Estrogen receptor, which are activated by the hormone 17beta- estradiol (estrogen)	Level 3 Template	Level 3 Amino Acids (Y/N)			
Human	estrogen receptor isoform 1	Y	Y	Homo sapiens	Y			
Western lowland gorilla	estrogen receptor isoform X2	Y	Y	Homo sapiens	Y			
Western gorilla	estrogen receptor alpha	Y	Y	Homo sapiens	Y			
Chimpanzee	estrogen receptor isoform X2	Y	Y	Homo sapiens	Y			
Pygmy chimpanzee	estrogen receptor	Y	Y	Homo sapiens	Y			
Sumatran orangutan	estrogen receptor isoform X2	Y	Y	Homo sapiens	Y			
Bornean orangutan	estrogen receptor alpha	Y	Y	Homo sapiens	Y			
Pig-tailed macaque	estrogen receptor isoform X2	Y	Y	Homo sapiens	Y			
Crab-eating macaque	estrogen receptor isoform X1	Y	Y	Homo sapiens	Y			
Rhesus monkey	estrogen receptor isoform X2	Y	Y	Homo sapiens	Y			
Sooty mangabey	PREDICTED: estrogen receptor isoform X2	Y	Y	Homo sapiens	Y			

Acknowledgements

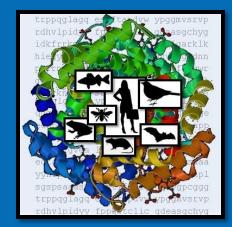
U.S. EPA, ORD

Ryan Staub (ORISE)

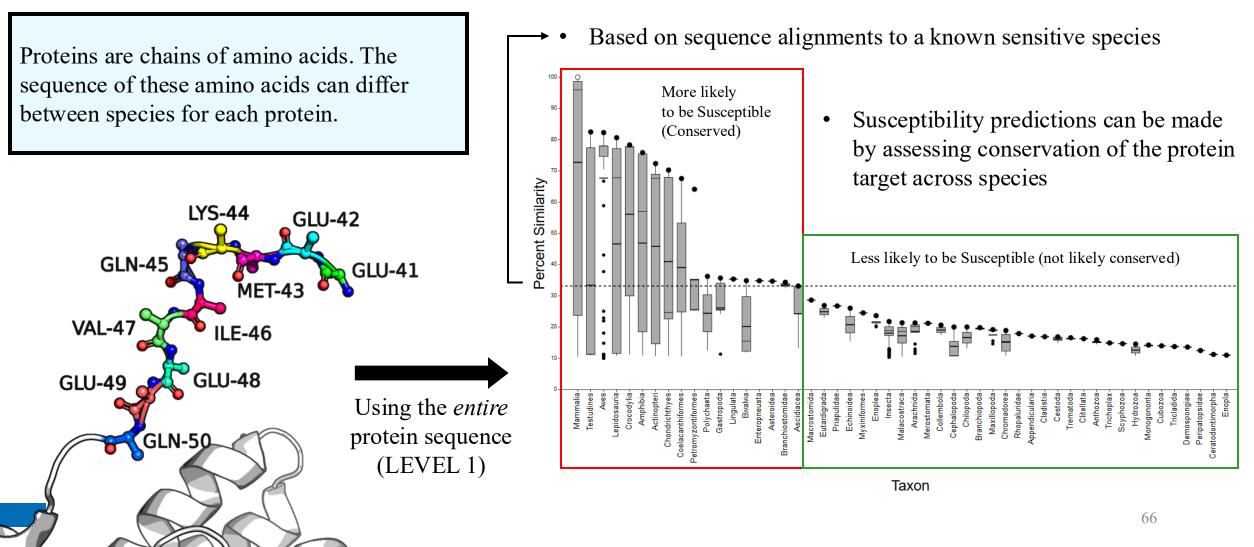
Marissa Brickley (EPA/University of Minnesota Duluth) Dylan Buglewicz (ORAU) David Ryoo (URAU) Maxwell Botz (past ORISE) Monique Hazemi (past ORISE) Donovan Blatz (past ORISE) Colin Finnegan (past ORISE) Sally Mayasich (past University of Wisconsin)

GDIT

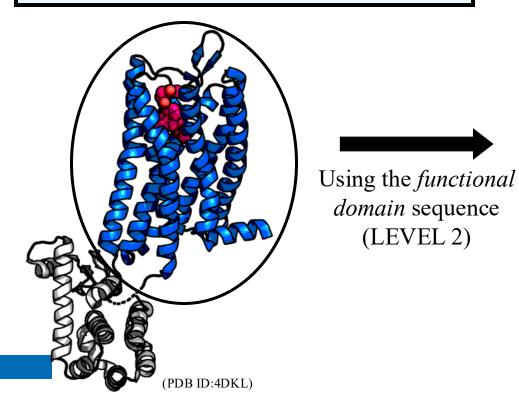
Cody Simmons Audrey Wilkinson Wilson Menendez SeqAPASS v8.1 (Released Earth Day 2025)

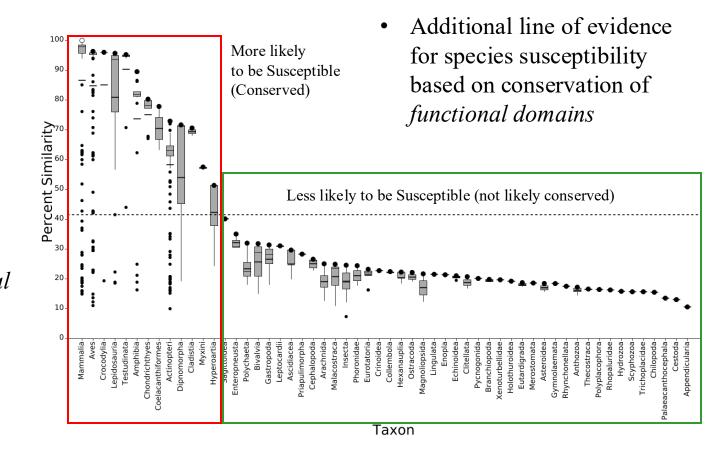

https://seqapass.epa.gov/seqapass/

Schumann.Peter@epa.gov LaLone.Carlie@epa.gov


SeqAPASS Concept Review: Levels 1 - 3

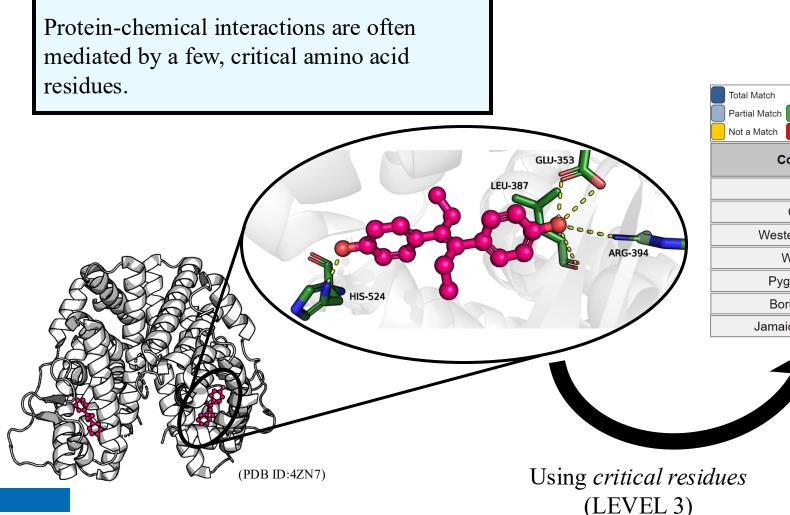

SeqAPASS Level 1 Evaluation: Primary Amino Acid Sequence Alignments




SeqAPASS Level 2 Evaluation: Conserved Functional Domain Sequence Alignments

By focusing sequence comparisons to the conserved domains, estimates of functional conservation can be made.

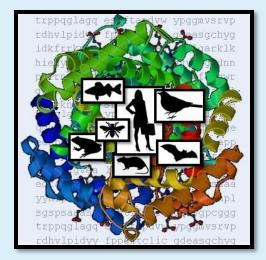
(LEVEL 2)



SeqAPASS Level 3 Evaluation: Critical Amino Acid Residue Conservation

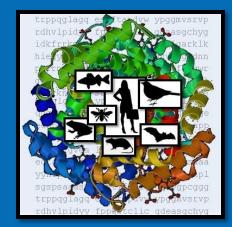
• Additional line of evidence for species susceptibility based on conservation of *critical* amino acids

Common Name	Similar Susceptibility	Amino Acid 1	Amino Acid 2	Amino Acid 3	Amino Acid 4
Human	Y	353E	387L	394R	524H
Chimpanzee	Y	353E	387L	394R	524H
Western lowland gorilla	Y	353E	387L	394R	524H
Western gorilla	Y	353E	387L	394R	524H
Pygmy chimpanzee	Y	353E	387L	394R	524H
Bornean orangutan	Y	353E	387L	394R	524H
Jamaican fruit-eating bat	N	353E			


Susceptible No

- Determine critical amino acid residues from:
- Structural data
- Mutagenesis studies
- Field resistance studies
- Molecular dynamics
- Etc.

Q&A


We'll see you in the next session!

Begins at 11:45 a.m. CT / 12:45 p.m. ET

You may stay on the call until Session 2 begins if you wish!

SeqAPASS Demo

