National Rivers and Streams Assessment Survey Design: 2023-2024

Target Population

The target population consists of all streams and rivers within the 48 contiguous states that have flowing water during the study index period excluding portions of tidal rivers up to head of salt. The study index period extends from April/May through September and is generally characterized by low flow conditions. The target population includes the Great Rivers and run-of-the-river ponds, and pools are included while non-run-of-the-river reservoirs are excluded. A complete definition of the target population is given in the field operations manual.

Data Quality Objectives

The data quality objectives, or design requirements, for the National Rivers and Streams Assessment are

- to estimate the proportion of rivers and streams with a margin of error of \pm 5% in the conterminous U.S. that fall below the designated threshold for good conditions for selected indicators with 95% confidence
- to estimate the proportion of rivers and streams with a margin of error of ± 15% in each of nine ecological reporting regions that fall below the designated threshold for good conditions for selected indicators with 95% confidence.
- to estimate the change in proportion of river and streams in the conterminous U.S. between 2018-19 and 2023-24 that fall below the designated threshold for good (or poor) condition for selected indicators. Change estimates should have a margin of error of \pm 15% at 95% confidence.
- to estimate the change in proportion of river and streams in the conterminous U.S. between 2018-19 and 2023-24 in each of nine ecological reporting regions that fall below the designated threshold for good (or poor) condition for selected indicators. Change estimates should have a margin of error of \pm 15% at 95% confidence.
- To revisit 10% of the sites in 2023-24 for variance component estimation and quality assurance.

Sampling Frame

Site selection using a survey design requires a sampling frame that includes the target population. Preferably the sampling frame includes all possible sites that are in the target population; since if they are not included, they have no opportunity to be selected. This is called undercoverage. Also, preferably the sampling frame excludes stream and river channels that are not in the target population, e.g., streams that are dry or canals/ditches. This is called overcoverage. The impact of undercoverage is that a portion of the target population is excluded. If this portion is small, then the impact on the estimates of stream condition will be small. The impact of overcoverage is that it increases the cost associated with completing the site evaluation. That is, more time and expense is involved in determining that a site selected by the survey design is in the target population. It also implies that the total stream length in the target population must be estimated from the site evaluation information. Consequently, the selection

of the sampling frame must minimize any undercoverage while also minimizing the amount of overcoverage.

The sampling frame was derived from and is a subset of the National Hydrography Dataset (NHD) product NHDPlusHR. The NHDPlus HR (https://doi.org/10.3133/fs20203033) is a geospatial dataset depicting the flow of water across the Nation's landscapes and through the stream network. The NHDPlus HR is built using the National Hydrography Dataset High Resolution data at 1:24,000 scale or more detailed, the 10-meter 3D Elevation Program data, and the nationally complete Watershed Boundary Dataset (Moore et.al. 2019). Since this is a better representation of streams and rivers in the contiguous United States, NRSA 2023-24 will use it as the source for its sampling frame with the intent to use it for at least the next 10-15 years. Note that NHDPlusHR is not restricted to a single map scale, e.g., 1:24K. While NHDPlusHR also includes attributes for Strahler order and Strahler Calculator, they are based on the available map scale, which means their definition depends on the map scale. NHDPlusHR also includes an attribute for mean annual flow for each reach. Mean annual flow estimates are based on a model described in the NHDPlusHR Users Guide. Details on the construction of the sampling frame are given in Appendix A.

The survey design depends on several key variables in the sampling frame. First, FRAME23 identifies which reaches are included in the sampling frame. Second, all reaches are assigned to a state and to an aggregated ecoregion. Third, all reaches have an estimated mean annual flow. The latter is used to define three stream size categories: small streams (SS) with flow between 1 to 5 cfs, large streams (LS) with flow between 5 to 100 cfs, and rivers (RV) with flow greater than 100 cfs. Note that reaches with mean annual flow below 1 cfs but are 5th or greater Strahler order are included. These mean annual flow categories were selected to be similar to the same categories based on Strahler order used in prior NRSA surveys.

Moore, R.B., McKay, L.D., Rea, A.H., Bondelid, T.R., Price, C.V., Dewald, T.G., and Johnston, C.M., 2019, User's guide for the national hydrography dataset plus (NHDPlus) high resolution: U.S. Geological Survey Open-File Report 2019–1096, 66 p., https://doi.org/10.3133/ofr20191096

Survey Design

The survey design is a spatially balanced design that is stratified by state with unequal probability selection by stream/river size based on mean annual flow. The survey design consists of two parts:

- Sites from NRSA 2018-19 that will be resampled in 2023-24 (note there are 3,197 evaluated sites available)
- New sites selected for NRSA 2023-24.

This design enables NRSA to address the dual objectives of (1) estimating status in 2023-24 and (2) estimating change in status compared to 2018-19 for all flowing waters. The total number of site visits available to satisfy the survey objectives is 2000. Since four sites (1 small stream, 1 large stream and 2 rivers) will be visited twice in each of the 48 states, this results in 1808 unique sites. NRSA 2018-19 sites will comprise approximately 904 unique sites and will contain all the

192 sites that will be sampled twice in 2023-24, if available otherwise they are new sites. New sites will be selected for the other approximately 904 unique sites.

Sample size requirements are given in terms of aggregated ecoregions and reach length. The survey design will be implemented by state so the sample size requirements must be given by state and reach length. Additionally, administrative restrictions specify that for each state the minimum number of unique sites must be greater than or equal to 20, less than or equal to 72, and be an even number of sites. The allocation of sites to states is approximately proportional to the reach length in each aggregated ecoregion that occurs in each state for small streams, large streams, and rivers, individually.

There are 498 site visits at small streams. Of these 498 site visits, 450 will be at unique sites and 48 will be revisits (1 revisit per state). Each state will sample a minimum of 5 unique small streams and a maximum of 18 unique large streams. For the 450 unique sites, 50 unique sites were allocated to each ecoregion and then sample sizes were assigned among the states approximately proportional to the total small stream length for that state and ecoregion combination. There will be 502 site visits at large streams. Of these 502 site visits, 454 will be at unique sites and 48 will be revisits (1 revisit per state). Each state will sample a minimum of 5 unique large streams and a maximum of 18 unique large streams. For the 454 unique sites, approximately 50 unique sites were allocated to each ecoregion and then sample sizes were assigned among the states approximately proportional to the total small stream length for that state and ecoregion combination. Of these 1000 site visits, 904 will be revisits (2 revisits per state). Each state will sample a minimum of 10 unique rivers and a maximum of 36 unique rivers. For the 904 unique sites, approximately 100 unique sites were allocated to each ecoregion and then sample sizes were assigned among the states approximately proportional to the total small stream length for that state and ecoregion combination.

Together, this all implies that there will be 2000 site visits. Of these 2000 site visits, 1808 will be at unique sites and 192 will be revisits (4 revisits per state). Each state will sample a minimum of 5 unique small streams, 5 unique large streams, and 10 unique rivers – totaling a minimum of 20 unique site visits. Combined with the 4 revisits, each state will have 24 site visits at a minimum. Each state will sample a maximum of 18 unique small streams, 18 unique large streams, and 36 unique rivers – totaling a minimum of 72 unique site visits. Combined with the 4 revisits, each state will have 76 site visits at a maximum.

Fish Tissue Study

A special study for fish tissue contaminants is planned to be conducted on rivers only. While the exact sample size is not currently known, the expectation is that they will be able to evaluate approximately 70% of the River sites with some of those sites not being able to provide an appropriate fish tissue sample. All river sites for NRSA 2023-24 were identified and 70% of them were designated for the study. The sites are assigned to NRS23_18RVT2 panels first, then NRS23_18Base, and then NRS23_23Base if necessary (more details about panel definitions are provided in the next section). Each of these sites are designated as a new panel with the addition of "_FT" at the end of the panel name. The number sites by state and panel are given below. Approximately 50% of sites are sites from 2018-19 and 50% are new sites.

State	NRS23_18RVT2RV_FT	NRS23_18BaseRV_FT	NRS23_23BaseRV_FT	Total
AL	2	2	8	12
AR	2	2	10	14
ΑZ	2	3	4	9
CA	2	9	14	25
CO	2	3	5	10
CT	2	0	4	6
DE	2	0	4	6
FL	2	2	3	7
GA	2	4	5	11
IA	2	5	7	14
ID	2	6	7	15
IL	2	4	6	12
IN	2	2	4	8
KY	2	3	4	9
LA	2	2	6	10
MA	2	2	3	7
MD	2	2	3	7
ME	2	1	12	15
MI	2	10	12	24
MN	2	7	12	21
МО	2	5	11	18
MS	1	0	8	9
MT	2	9	14	25
NC	2	2	4	8
ND	2	4	9	15
NE	2	4	6	12
NH	1	0	6	7
NJ	2	2	3	7
NM	2	2	3	7
NV	2	2	4	8
NY	2	5	16	23
OH	2	4	8	14
OK	2	10	12	24
OR	2	8	11	21
PA	2	3	7	12
RI	1	0	6	7
SC	2	2	3	7
SD	2	7	9	18
TN	2	3	5	10
TX	2	11	12	25
UT	2	4	5	11
VA	2	0	6	8
VT	2	2	3	7
WA	2	6	12	20

WI	2	9	11	22
WV	2	0	4	6
WY	2	4	6	12
Total	91	177	337	605

Panels and Site Replacement

This is a critical variable for implementing the survey design. The possible values are given below and within each state the sites are ordered by these panels. While the names appear to be redundant, they ensure that the panels are uniquely named across all design cycles. The first part "NRS23" identifies the panel as one from the NRSA 2023-24 design cycle. The next values of "18" or "23" identifies the panel sites as being sites from the 2018-19 design cycle or new sites from the 2023-24 design cycle. "RVT2" identifies sites that will be visited twice in 2023-24 and they are all from previously sampled sites in 2018-19. "Base" identifies sites that are part of the base sites for 2023-24 in addition to the RVT2 sites which are also base sites. "Over" designates over sample sites. Finally, "SS", "LS" and "RV" designates sites from the three reach categories. Note that sites will be replaced by sites from the same reach category.

- NRS23_18RVT2SS only one of these for each state and it is the first resample site in this reach category in siteID order. Note that it is very possible that this site may have not been sampled in 2018-19. It will be evaluated again in 2023-24 to determine if it can be sampled, and if not, it is then replaced by the first NRS23_18BaseSS sample.
- NRS23_18BaseSS all the remaining sites required for each state in this reach category from 2018-19. If it cannot be sampled in 2023-24, then it will be replaced by the next available NRS23_18OverSS site.
- NRS23_18RVT2LS only one of these for each state and it is the first resample site in this reach category in siteID order. Note that it is very possible that this site may have not been sampled in 2018-19. It will be evaluated again in 2023-24 to determine if it can be sampled, and if not, it is then replaced by the first NRS23_18BaseLS sample.
- NRS23_18BaseLS— all the remaining sites required for each state in this reach category from 2018-19. If it cannot be sampled in 2023-24, then it will be replaced by the next available NRS23_18OverLS site.
- NRS23_18RVT2RV_FT There are two of these for each state and it is the first two resample sites in this reach category in siteID order. Note that it is very possible that these sites may have not been sampled in 2018-19. It will be evaluated again in 2023-24 to determine if it can be sampled and if not then replaced by the first NRS23_18BaseRV sample. The first visit will also include sampling for fish tissue contaminants.
- NRS23_18BaseRV_FT— Site that must be sampled for fish tissue contaminants from 2018-19. If it cannot be sampled in 2023-24, then it will be replaced by the next available NRS23_18BaseRV or NRS23_18OverRV site if no NRS23_18BaseRV site is available.
- NRS23_18BaseRV— all the remaining sites required for each state in this reach category from 2018-19. If it cannot be sampled in 2023-24, then it will be replaced by the next available NRS23_18OverRV site.
- NRS23_23BaseSS These are the SS new sites selected for 2023-24 listed in their siteID order.

- NRS23_23BaseLS These are the LS new sites selected for 2023-24 listed in their siteID order.
- NRS23_23BaseRV_FT— These are the RV new sites selected for 2023-24 listed in their siteID order that will be sampled for fish tissue contaminants. If it cannot be sampled then it will be replaced by the next available NRS23_23BaseRV or NRS23_18OverRV site if no NRS23_23BaseRV site is available.
- NRS23_23BaseRV— These are the RV new sites selected for 2023-24 listed in their siteID order.
- NRS23_18OverSS These are the remaining SS sample sites evaluated in 2018-19 listed in their siteID order.
- NRS23_18OverLS These are the remaining LS sample sites evaluated in 2018-19 listed in their siteID order.
- NRS23_18OverRV These are the remaining RV sample sites evaluated in 2018-19 listed in their siteID order.
- NRS23_23OverSS These are the SS new over sample sites selected for 2023-24 listed in their siteID order.
- NRS23_23OverLS These are the LS new over sample sites selected for 2023-24 listed in their siteID order.
- NRS23_23OverRV These are the RV new over sample sites selected for 2023-24 listed in their siteID order.

The survey design is explicitly stratified by state for both designs. The unequal probability categories are specific to survey design used for NRSA 2018-19 and NRSA 2020-24. In all cases, the categories are SS, LS, and RV.

Expected Sample Size

While the overall sample size is 1808 unique sites, these sites must be allocated to the NARS nine aggregate ecoregion. Each region is expected to have the same number of sites as well as half the sites be streams and the other half be rivers. Based on this the following allocation was made to add up to 1,808 sites.

Table 1 Expected number of sites by ecoregion and stream size

Aggregated Ecoregion	SS	LS	RV	Total
Coastal Plains	50	51	101	202
Northern Appalachians	50	50	100	200
Northern Plains	50	50	100	200
Southern Appalachians	50	51	101	202
Southern Plains	50	50	100	200
Temperate Plains	50	51	101	202
Upper Midwest	50	50	100	200
Western Mountains	50	51	101	202
Xeric	50	50	100	200
Total	450	454	904	1808

Table 2 Total length (miles) by Aggregated Ecoregion and Stream Size

Aggregated Ecoregion	SS	LS	RV	Total
Coastal Plains	159,836	117,351	38,642	315,829
Northern Appalachians	76,687	46,658	11,894	135,239
Northern Plains	54,864	31,908	6,353	93,125
Southern Appalachians	183,091	103,567	30,742	317,400
Southern Plains	70,753	56,464	13,584	140,801
Temperate Plains	143,977	88,262	24,758	256,997
Upper Midwest	41,879	39,013	14,015	94,906
Western Mountains	163,465	107,207	26,634	297,306
Xeric	65,126	44,480	17,858	127,465
Total	959,676	634,911	184,480	1,779,067

The allocation of sites to states is approximately proportional to the reach length in each aggregated ecoregion that occurs in each state for small streams, large streams, and rivers. Additionally, administrative requirements specify that for each state the minimum sample size must be 20 and maximum must be 72 (or 24 and 76 with 4 revisits). The minimum for each state is allocated so that the minimum must be 5 for small streams, 5 for large streams, and 10 for rivers. Similarly, the maximum for each state must be 18 for small streams, 18 for large streams, and 36 for rivers.

Final Survey Design Summary

State	SS	LS	RV	Unique Sites	SS Revisits	LS Revisits	RV Revisits	Total Visits
AL	10	9	17	36	1	1	2	40
AR	8	8	20	36	1	1	2	40
AZ	8	8	14	30	1	1	2	34
CA	18	18	36	72	1	1	2	76
CO	11	12	15	38	1	1	2	42
CT	5	5	10	20	1	1	2	24
DE	5	5	10	20	1	1	2	24
FL	5	5	10	20	1	1	2	24
GA	8	8	16	32	1	1	2	36
IA	9	9	20	38	1	1	2	42
ID	10	10	22	42	1	1	2	46
IL	9	10	17	36	1	1	2	40
IN	5	5	12	22	1	1	2	26
KS	17	14	21	52	1	1	2	56
KY	6	6	14	26	1	1	2	30
LA	7	7	14	28	1	1	2	32
MA	5	5	10	20	1	1	2	24

MD	_	_	10	20	1	4	2	2.4
MD	5	5	10	20	1	1	2	24
ME	9	11	22	42	1	1	2	46
MI	15	18	35	68	1	1	2	72
MN	13	16	31	60	1	1	2	64
MO	14	12	26	52	1	1	2	56
MS	9	8	13	30	1	1	2	34
MT	18	18	36	72	1	1	2	76
NC	6	7	13	26	1	1	2	30
ND	9	8	21	38	1	1	2	42
NE	12	11	17	40	1	1	2	44
NH	5	5	10	20	1	1	2	24
NJ	5	5	10	20	1	1	2	24
NM	6	6	10	22	1	1	2	26
NV	8	7	11	26	1	1	2	30
NY	18	18	34	70	1	1	2	74
ОН	8	8	20	36	1	1	2	40
OK	13	10	35	58	1	1	2	62
OR	10	11	31	52	1	1	2	56
PA	10	10	18	38	1	1	2	42
RI	5	5	10	20	1	1	2	24
SC	5	5	10	20	1	1	2	24
SD	16	16	26	58	1	1	2	62
TN	7	6	15	28	1	1	2	32
TX	16	18	36	70	1	1	2	74
UT	7	7	16	30	1	1	2	34
VA	5	6	11	22	1	1	2	26
VT	5	5	10	20	1	1	2	24
WA	9	10	29	48	1	1	2	52
WI	18	18	32	68	1	1	2	72
WV	5	5	10	20	1	1	2	24
WY	13	15	18	46	1	1	2	50
Total	450	454	904	1808	48	48	96	2000

Appendix A: Sample Frame

NHDPlusHR was downloaded from the USGS NHD website in September 2021 by hydrologic region. It contains approximately 24,719,751 reaches and is 26GB in size. The reaches were intersected with state boundaries (see below for details) and a single geopackage data base was created with reaches allocated to states. For streams and rivers on the boundary between two states, the reaches are included in both states and are identified as a border stream and river (see below). Additional attributes are added (see below for description of each) which may also result in reaches being split. NHDPlusHR Reach length by state in miles is:

PSTL_CODE	LENGTH_MI	PSTL_CODE	LENGTH_MI
AL	132909.1376	NC	143953.9832
AR	137592.4741	ND	92843.92524
AZ	296545.6658	NE	128135.3446
CA	520129.1329	NH	18659.377
СО	279584.3583	NJ	25568.88806
СТ	13880.76264	NM	241910.7378
DE	5968.506539	NV	315349.1841
FL	106259.2024	NY	101715.6812
GA	119677.4003	ОН	92099.41976
IA	115399.4602	OK	168921.0201
ID	181427.888	OR	318148.6298
IL	121624.4618	PA	86507.30841
IN	274222.1655	RI	2398.599804
KS	184292.9011	SC	79842.98214
KY	102063.5363	SD	165250.777
LA	138742.2117	TN	113588.2242
MA	18693.81835	TX	537849.2994
MD	28163.49805	UT	187347.2569
ME	55800.10056	VA	110930.4345
MI	87085.95572	VT	26509.93282
MN	106029.4588	WA	245880.6961
МО	184692.6077	WI	89541.57907
MS	166290.6754	WV	55392.41855
MT	390617.0623	WY	289208.0737
Total			7405246.2154

FRAME23 Variable

The sampling frame is identified in NHDPlusHR by adding an attribute, FRAME23, that identifies if the reach is included in the sampling frame or excluded and for what reason. The sampling frame is identified using the criteria: FCODE, NHD lake polygon intersection, side channels, connectors within double-lined rivers, and mean annual flow (QEMA). In addition, border reaches are identified as being included for only one of the states. The following sections

describe the exclusion process, and it is assumed that they are done in order presented. Note that all reaches initially have a value for FRAME23 that is "Include", i.e., the reach is included in the sampling frame. Possible values are Include, Exclude_FCODE, Exclude_Lake, Exclude_SideChannel, Exclude_Connector, and Exclude_NoFlow.

FCODE Exclusions of Sample Frame Reaches

Reaches will be excluded and assigned value "Exclude_FCODE" when the FCODES are associated with

- Pipelines (FCODE 42800 42824)
- Coastline (FCODE 56600)
- Canal/ditch (FCODE 33600, 33601, 33603)
- Underground Connector (42000 42003)

Note that a reach coded as **Exclude FCODE** is the initial reason a reach is excluded.

Identification of Lakes and Reservoirs

The linear network of reaches includes centerlines through lakes and reservoirs. Since impounded waters with a residence time greater than one week are not part of the NRSA target population, reaches within lakes and reservoirs are removed from the sampling frame. This will be done using the polygon layer of NHDPlusHR associated with lakes and reservoirs. The value for **FRAME23** will be **Exclude_Lake** if the reach is within an NHDPlusHR Waterbody feature (denoted by sharing a NHDWaterbody). The assumption is that only reaches that already are coded **Include** will be changed to **Exclude_Lake**. This must be verified. But if reach is already coded **Exclude FCODE**, it is retained.

Identification of Side Channels

Rivers and streams occasionally are braided, i.e., have side channels. These side channels can be identified using Strahler calculator and Strahler order. If a reach is identified as a side channel, then FRAME23 will be coded as Exclude_SideChannel, unless it is already excluded for other reasons.

Identification of Connectors within Double-lined Rivers

NHDPlusHR includes reaches that are connectors to the centerline of double-lined rivers (i.e., rivers that are polygons). Experience in field operations, has identified that occasionally selecting a site on one of these connectors leads to a site being located within the double-lined river and the river is sampled instead of the stream tributary. To minimize this issue, the reaches in the NHDPlusHR linear network will identify those that are within the river polygon and change the **FRAME23** value to **Exclude_Connector**, unless the **FRAME23** value is already an exclude code.

Identification of Flowing Water Reaches

In the past, NRSA has used perennial/intermittent FCODEs to identify reaches that are likely to have flowing waters during the summer index period. It is well-known that this coding is not reliable. NHDPlusHR includes a mean annual flow estimate (QEMA) for every reach. Mean annual flow will be used to identify reaches expected to have flowing waters during the May

through September field season. Given a flow criterion, **FRAME23** will be set to **Exclude_NoFlow** if a reach does not meet the criteria; unless the **FRAME23** value is already an exclude code.

PSTL CODE

Each reach is assigned to a state using the Census Bureau state boundary file. State two letter postal code for site sampled. 50 state postal codes plus AS, MP, GU, PR, VI for American Samoa, Commonwealth of Northern Marianas, Guam, Puerto Rico and Virgin Islands. No missing or "blank" values allowed. Reaches in the District of Columbia are assigned to Maryland. For reaches that intersect the border between two states the reach is split and assigned to the appropriate state. For reaches that are on the border of two states, a Canadian province, or Mexico, the reach is assigned to both states or to the state if share with Canadian province or Mexico. See **BORD RIV**.

BORD_RIV: Border River

Each reach must be assigned to a state or may be a river between two states. The NHDPlusHR flowline represented by reaches represents the centerline of the stream or river. This centerline may cross back-and-forth across the US. Census Bureau state boundary line. Rather than have this occur, a decision was made to assign the entire reach, or collection of reaches, for the border reaches to one state of the two states. An attribute, **BORD_RIV**, designates whether a reach is a border reach or is internal to a state. **BORD_RIV** has a two-letter state postal code if within a state and combination of postcodes if on border between two states: MM:NN format. Note that this does not identify which state the reach will be assigned to for the survey design. It only identifies the border rivers. For NRSA, the assignment to a state is completed as the last assignment for **FRAME23**.

EPA REG: EPA Region

The attribute **EPA_REG** provides the US EPA region associated with the reach (https://www.epa.gov/aboutepa/regional-and-geographic-offices). The assignment is based on the **PSTL_CODE**. The values are Region_01, Region_02, Region_03, Region_04, Region_05, Region_06, Region_07, Region_08, Region_09, and Region_10.

US EPA	States	
Region		
Region_01	Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island,	
	Vermont	
Region_02	New Jersey, New York	
Region_03	Delaware, Maryland, Pennsylvania, Virginia, West Virginia	
Region 04	Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South	
	Carolina, Tennessee	
Region_05	Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin	
Region_06	Arkansas, Louisiana, New Mexico, Oklahoma, Texas	
Region 07	Iowa, Kansas, Missouri, Nebraska	
Region_08	Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming	
Region 09	Arizona, California, Nevada	

Region 10	Idaho, Oregon, Washington

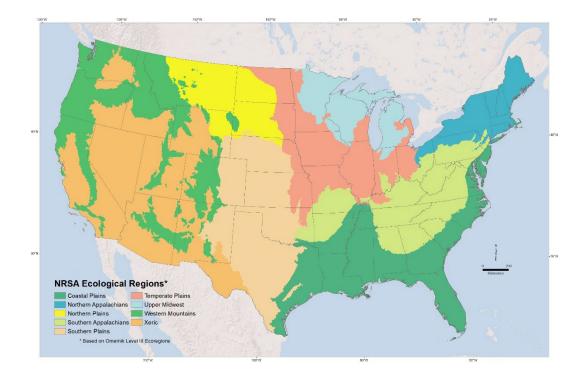
STATECTY: State County FIPS Code

Federal Information Processing System (FIPS) Codes for States and Counties is assigned based on the above assignment of a reach to a county. The FIPS value is preceded by the letter "F" to preserve leading zeros.

STATE_NM: State Name

The full state name is assigned based on **PSTL_CODE**.

CNTYNAME: County Name


The full county name within a state is assigned based on **FIPS_CODE**. The source for the name is ESRI counties based on census 2010. Note that reaches that cross-county borders are split. The assignment of county name is made to be consistent with the assignment to a state. That is, a border reach is assigned to the county associated with the state layer for the geopackage.

Ecoregion based Attributes

Attributes are included based on Omernik Level III and Level IV ecoregions and North American Level 1 and Level 2 ecoregions. Based on combinations of Omernik Level III ecoregions, NARS defines three and nine aggregated ecoregions. The attributes and definitions are given below.

Ecoregion	Attribute Name	Description
Type		
NARS	AG_ECO3	NARS 3-level reporting region based on aggregating
Aggregated		AG_ECO9 reporting regions. Values: EHIGH, PLNLOW,
Ecoregion		WMTNS. No missing or "blank" values allowed.
NARS	AG_ECO3_NM	NARS 3-level reporting region name. Values: Eastern
Aggregated		Highlands, Plains and Lowlands, West. No missing or
Ecoregion		"blank" values allowed.
NARS	AG_ECO9	NARS 9-level reporting region based on aggregated
Aggregated		Omernik Level III ecoregions. Values: CPL, NAP, NPL,
Ecoregion		SAP, SPL, TPL, UMW, WMT, XER. No missing or
		"blank" values allowed.
NARS	AG_ECO9_NM	NARS 9-level reporting region name. Values: Coastal
Aggregated		Plains, Northern Appalachians, Northern Plains, Southern
Ecoregion		Appalachians, Southern Plains, Temperate Plains, Upper
		Midwest, Western Mountains, Xeric. No missing or
		"blank" values allowed.
CEC North	NA_L1CODE	CEC North American Level I ecoregion code. Values of 5
American		to 15 excluding 14. No missing or "blank" values allowed.
Ecoregion		

CEC North	NA_L1NAME	CEC North American Level I ecoregion name. Values:
American	_	EASTERN TEMPERATE FORESTS, GREAT PLAINS,
Ecoregion		MARINE WEST COAST FOREST, MEDITERRANEAN
_		CALIFORNIA, NORTH AMERICAN DESERTS,
		NORTHERN FORESTS, NORTHWESTERN
		FORESTED MOUNTAINS, SOUTHERN SEMI-ARID
		HIGHLANDS, TEMPERATE SIERRAS, TROPICAL
		WET FORESTS. No missing or "blank" values allowed.
CEC North	NA_L2CODE	CEC North American Level II ecoregion code. Form is
American		n.n where leading "n" is L1 and following "n" is level 2.
Ecoregion		No missing or "blank" values allowed.
CEC North	NA_L2NAME	CEC North American Level II ecoregion name. No
American		missing or "blank" values allowed.
Ecoregion		
Omernik	US_L3CODE	Omernik Level III ecoregion code. Coded as "0" if
Ecoregion		ecoregions have not been defined for state or territory. No
		missing or "blank" values allowed.
Omernik	US_L3NAME	Omernik Level III ecoregion name. "None" if no
Ecoregion		ecoregion defined for state or territory. No missing or
		"blank" values allowed.
Omernik	US_L4CODE	Omernik Level IV ecoregion code. Level three codes plus
Ecoregion		aphabetic ending identifying level 4 subregion. "None" if
		no ecoregion defined for state or territory. No missing or
		"blank" values allowed.
Omernik	US_L4NAME	Omernik Level IV ecoregion name. "None" if no
Ecoregion		ecoregion defined for state or territory. No missing or
		"blank" values allowed.

Urban Attributes

URBN_NRS08: Urban reach defined for NRSA 2008-9

Stream identified as an urban stream based on urban definition used in NRSA 2008-9 design. Urban based on 2000 Census polygons of urban areas and 3km buffer to ensure census waters included. No missing or "blank" values allowed.

URBN_NRS18: Urban reach defined for NRSA 2018-19

Reach identified as an urban reach based on urban definition used in NRSA 2018-19 design. Urban based on 2010 Census polygons of urban areas. No 3km buffer to ensure census waters included since census polygons now include census waters. No missing or "blank" values allowed.

URBN_NRS23: Urban reach defined for NRSA 2023-24

Reach identified as an urban reach based on urban definition used in NRSA 2018-19 design. Urban based on 2021 Census polygons of urban areas. No 3km buffer to ensure census waters included since census polygons now include census waters. No missing or "blank" values allowed.

STRM SIZE: Stream Size

NRSA has used Strahler order categories to assign stream/river size to each reach. Given that NHDPlusHR uses multiple resolutions for the stream network, Strahler order is likely not a good surrogate for stream size. More likely a variable can be created based on mean annual stream

flow. The categories found to be useful in the past are small streams, large streams, and rivers. Reason for these categories is that the ability to obtain landowner permission differs for the categories and that whether the stream is found to be in the target population differs. Three mean annual flow categories are 1 to 5 cfs, 5 to 100 cfs and greater than 100 cfs.

NHDPlusHR Attributes

Several attributes are included with NHDPlusHR.

FCODE: NHD Feature Code

NHD 5-digit code for feature type. Generally, no missing values allowed but it is possible that a few lakes may not be in sample frame if from a state study or are hand-picked lakes. In this case value is "0". No missing or "blank" values allowed.

FTYPE: NHD Feature Type

Generally, no missing values allowed but it is possible that a few lakes may not be in sample frame if from a state study or are hand-picked lakes. In this case value is "None". No missing or "blank" values allowed.

STRAH_CAL: Strahler Calculator

This is a modified Strahler order for each reach that accounts for side channels. Used to identify braided reaches. Values of 0 to 10. No missing or "blank" values allowed.

STRAH_ORD: Strahler Order

Strahler order for reach from NHDPlusHR. Values from 0 to 10. No missing or "blank" values allowed.

GNIS_ID:

Geographic Names Information System ID (from NHD). If value is "0", then no GNIS_ID available. No missing or "blank" values allowed.

GNIS_NAME:

USGS Geographic Names Information System name (from NHD). Value of "None" if no GNIS_NAME available. No missing or "blank" values allowed.

LENGTH_KM:

Reach length in km.

MEAN_FLOW: Mean Annual Flow

The reach estimated mean annual flow (cfs).

REACHCODE:

NHD Reach code assigned. Value of 'None' if site is on reach that is not in NHD. No missing values or "blanks" allowed.

NHDPLUSID:

NHDPlusHR identifier for a flowline feature.

Hydrologic Basin Attributes

Attribute	Description	Values
HUC2	USGS Level 2 Hydrologic Unit Code where stream reach is located (based on NHDPlusV2 use of HUCs). No missing or "blank" values allowed.	H01, H02, H03N, H03S, H03W, H04, H05, H06, H07, H08, H09, H10L, H10U, H11, H12, H13, H14, H15, H16, H17, H18, H19, H20
HUC2_NM	USGS Level 2 Hydrologic Unit Region Name where stream reach is located (based on NHDPlusV2 use of HUCs). No missing or "blank" values allowed.	Arkansas-Red-White Region, California Region, Great Basin Region, Great Lakes Region, Lower Colorado Region, Lower Mississippi Region, Lower Missouri Region, Mid-Atlantic Region, New England Region, Ohio Region, Pacific Northwest Region, Rio Grande Region, Souris-Red-Rainy Region, South Atlantic-North Region, South Atlantic-South Region, South Atlantic-West Region, Tennessee Region, Texas Region, Upper Colorado Region, Upper Mississippi Region, Upper Missouri Region
HUC8	USGS Level 8 Hydrologic Unit Code where stream reach is located (based on NHDPlusV2 use of HUCs).	Eight-digits preceded by letter H. No missing or "blank" values allowed.
HUC8_NM	USGS Level 8 Hydrologic Cataloging Unit Name where stream reach is located.	Character name for unit. No missing or "blank" values allowed.
MAJ_BASIN	Major USGS Hydrologic Basins code derived from NHDPlus codes. Has leading "H" to preserve leading zeros. No missing or "blank" values allowed.	H01, H02, H03, H04, H05_06, H07, H08, H09, H10, H11, H12_13, H14, H15, H16, H17, H18
MAJ_BAS_NM	Name of major USGS Hydrologic Basins derived from NHDPlus names. No missing or "blank" values allowed.	Arkansas-White-Red Region, California Region, Great Basin Region, Great Lakes Region, Lower Colorado Region, Lower Mississippi Region, Mid- Atlantic Region, Missouri Region, New England Region, Ohio-Tennessee Region, Pacific Northwest Region, Rio Grande-Texas-Gulf Region, Souris- Red-Rainy Region, South Atlantic Gulf Region, Upper Colorado Region, Upper Mississippi Region,

MIS_BASIN	The hydrologic basin code	H05, H06, H07, H08, H10L, H10U, H11, NMRB
	for streams in the	
	Mississippi Basin derived	
	from NHDPlus codes. For	
	streams not in the	
	Mississippi Basin value	
	equal to "NMRB". No	
	missing values allowed.	
MIS_BAS_NM	The hydrologic basin name	Ohio-Tennessee Region Upper Mississippi Region
	for streams in the	Lower Mississippi Region Lower Missouri
	Mississippi Basin derived	Region Upper Missouri Region Arkansas-Red-
	from NHDPlus names.	White Region Not Mississippi River Basin
	"Not Miss River Basin" for	
	streams not in the	
	Mississippi Basin. No	
	missing values allowed.	

OWN_NARS: Land ownership

Each reach is assigned a land ownership category. Land ownership code derived from USGS PADUS (http://gapanalysis.usgs.gov/padus/data/) - pulled May 2016 version of database. Aggregated to categories used by NARS. Text of 13 land ownership category names. Similar to OWN_TYPE in USGS PADUS dataset except that Federal_Land is separated into major federal agencies. No missing or "blank" values allowed. Valid values are BLM, DOD, DOE, USFS, FWS, NOAA, Non Federal, NPS, Tribal Land, USACE, USBR, NRCS, Other Fed.

FEOW_ID: Freshwater Ecoregions Code

Freshwater Ecoregions of the World (2015) code (https://www.feow.org/). Numeric value with no missing or "blank" values allowed.

FS EW: Forest Service Eastern/Western United States

Eastern or western US Forest Service land. Not_USFS if not US Forest Service land. Values are East, West, or Not_USFS. No missing or "blank" values allowed.

Appendix B: Arizona

Arizona requested additional sites to conduct a state-level assessment and a determination whether the Arizona GIS stream network could be used to replace the national NRSA 2023-24 sample frame for Arizona. The Arizona GIS network and the NRSA 2023-24 GIS network are both based on NHD high resolution stream networks. Arizona has restricted the network based on their knowledge of streams in the state as well as flow modeling. NRSA has restricted the network based on mean annual flow as well as other criteria to eliminate none flowing waters of interest. Based on a comparison of the two networks, while difference in reaches do occur, a decision was made to use the Arizona GIS network as the basis for the sampling frame. An attribute was added to the reaches which designates whether the reach is below or above 5,000 ft elevation to designate warm (<5,000 ft) and cold (>5,000 ft) streams.

The current sites in the design for Arizona will have to be replaced after the new sites are selected.

ADEQ intensification study needs:

- 30+ warmwater sites
- 20+ coldwater sites
- Perennial, wadeable streams (ADEQ flow regime map or "small" and "large" streams). We might want to see what shows up in the River category...might be some that meet our needs.
- Non-tribal land
- Two year sample period 2023-2024 to coordinate with National survey period
- Index period-April-June. Same as national survey.

Remaining questions

- Will ADEQ sample for all NRSA parameters during our state scale survey? Very likely not. Mostly an issue of lab cost
- We will use our own contractors for sampling; need to make sure they get included in training. The contractor will be crew lead and we will supply 2 ADEQ staff members to the Team.
- Will we use our own labs or EPA labs? Once we see what the EPA national lab costs are, we'll be able to decide.
- ADEQ will likely sample in 3 other seasons for assessment purposes
- How soon will national data be made available to ADEQ? We will want to utilize the dataset for our statewide and warmwater comparison studies.
- Can the ADEQ Flow Regime map & linework be used for site selection? ADEQ's Flow
 regime map was created in the medium res NHD, however has been mapped to the hi-Res
 NHD, so the linework should align. Can you try it out? We've worked hard to update our
 Flow regimes and it will result in less errors for us if we just use the WBIDs with
 perennial status.

Appendix C: Indiana

Indiana conducts a state monitoring program for streams that integrates NRSA 2023-24 sites that occur in three basins with their state sites. The fifth round of their statewide probabilistic sampling is conducted by the Indiana Department of Environmental Management (IDEM) in 2020-2028. The basins that overlap the NRSA are in the Great Miami River Basin (2023), Upper Wabash River Basin (2024) and Lower Wabash River Basin (2025). For NRSA, Indiana was completed as all other states with the selection of sites by small streams, large streams, and rivers.

The additional sites for the state monitoring program are not included in the NRSA 2023-24 selection but they are provided directly to Indiana where the NRSA sites and additional sites for the state basins are combined. This was done since the state design requires additional stratification and unequal probability categories that are not in the national design.

Note that at the additional sites, Indiana will not be providing that data to NRSA.

Appendix D: Kansas

The Kansas state-specific design is based on the Kansas Surface Water Register (KSWR) GIS layer of officially recognized streams and rivers within the state. It is based on the 1:24000 NHD. The current version was provided by Kansas during the summer 2016. For 2023-24, Kansas provided a few updates to the KSWR. The NRSA design team used this updated sample frame and added variables to match those used for all NRSA states. In prior studies, it was determined that the KSWR includes streams and rivers that meet the definition of the NRSA target population. The survey design consists of the Resample Design for Kansas as described above and an equal probability survey design for new sites. Note that the sites from 2018-19 were also based on the KSWR sample frame. The new site design is an equal probability survey design. The total number of sites selected is sufficient to provide Kansas with sites for the next 5-years. Otherwise, the survey design is the same as for NRSA 2023-24 in other states.

Note that at the additional sites, Kansas will not be providing that data to NRSA.

Appendix E: New Hampshire

New Hampshire has a target population of wadeable streams with watersheds between 2 to 85 square miles. In addition, New Hampshire has a state sample frame based on NHD 1:24000. The NRSA 2023-24 sample frame is based on NHDPlusHR which is at least 1:24000. Given this, NHDPlusHR-based sample frame will be used for the additional sites required for New Hampshire. This was completed by selecting additional over sample sites for SS and LS (45 times more) compared to the standard 5 times more for each state. No other change was implemented.

Note that at the additional sites, New Hampshire will not be providing that data to NRSA.

Appendix F: Oklahoma

Note that at the additional sites, Oklahoma will not be providing that data to NRSA.

Objectives: (from Josh Bailey)

The following objectives are to satisfy the 2023-2027 Oklahoma Statistical Survey design with the 2023-2024 NRSA component built into the overall study. The survey design must be able to satisfy the required elements of Oklahoma's statewide 5-year assessment, which are described in detail below. The primary reporting goal of the upcoming survey is to provide an overall statewide condition assessment. Additionally, Oklahoma will report on the condition of several subpopulations, including aggregated ecoregions, large and small waterbodies, and interim reports to meet integrated 305(b) reporting requirements. Finally, the study should be connected across Oklahoma's previous surveys to allow for a substantive trend analysis. To meet these study and reporting needs, the design should meet the following requirements.

- 1. The target sample size will be 120 sites. The first two years will focus on completing the NRSA study with continued sampling through 2027 to satisfy n=120. The survey design will be sampled to facilitate not only an eventual statewide condition assessment using all 120 sites, but several interim statewide condition assessments to meet Oklahoma's integrated reporting requirements for section 305(b) of the CWA.
- 2. The survey design must be ecoregionally representative and will include an aggregated ecoregion component. In the 2005-2007 (Oklahoma R-EMAP) and the 2013-2017 survey (NRSA 2), and the 2018-19 survey (NRSA 3), Oklahoma was divided into 3 aggregate ecoregional subpopulations: Western Plains/Tablelands, Temperate Forests, and Forested Plains/Flint Hills. To facilitate a statistically meaningful condition assessment of each aggregated ecoregion, each aggregated ecoregion will have 40 target sites.
- 3. The survey design will be representative of all waterbody sizes. As in the most recent survey design, waterbodies will be divided into Strahler size classes. The Oklahoma component will mirror the NRSA classification sizes creating the following subpopulations: Rivers, LargeStreams, and SmallStreams. Each subpopulation will have an associated oversample panel. The reporting goal is to provide a statistically meaningful condition assessment of each Strahler subpopulation.
- 4. The Survey design will have a trend component referenced to Oklahoma's 4 previous surveys: 2005-2007 (Oklahoma R-EMAP), 2008-2012 (NRSA 1), 2013-2017 (NRSA 2), and 2018-2022 survey (NRSA 3),. Resample sites from each study should be included to allow for analysis of trends through each study period.

In summary, the OWRB wants a draw consistent with the outlined objectives and specifications for Oklahoma that includes the specifications of the 2023-2024 NRSA study. This design will make it possible to complete and report the following:

• Provision of data for the 2023-2024 NRSA;

- A statewide condition assessment (n=120);
- Interim 2-year statewide condition assessments (n=~40-60 sites) to satisfy integrated reporting requirements for CWA 305(b);
- Condition assessments of the three aggregate ecoregions combined (n=40); and
- Condition assessments of 3 size classes of waterbodies (n=40), as well as small and large waterbodies (n=~60).

Target population:

The target population consists of all streams and rivers within Oklahoma that have flowing water during the study index period. The study index period extends from April/May through September and is generally characterized by low flow conditions. Run-of-the-river ponds and pools are included while reservoirs are excluded. A complete definition of the target population is given in the NRSA field operations manual.

Sampling Frame

Survey Design

The survey design consists of two separate designs to address the dual objectives of (1) estimating current status and (2) estimating change in status for all flowing waters:

- Resample design applied to NRSA 2008-9 and NRSA 2013-14 sites
- Resample design for Oklahoma consisting of sites from OK 2015-16 and OK REMAP sites.
- New site design for NRSA 2018-19.
- New site design for Oklahoma state-level surveys in 2018-19 and 2020-21.

Sample Size Requirements

Sample Size Summary

The number of sites by Oklahoma three aggregated ecoregions and four Strahler order categories

Sample Frame Summary

A summary of the sample frame for Oklahoma by Aggregated Oklahoma ecoregions and Strahler Category (km).

Note that all Oklahoma sites are NOT provided in the NRSA 2023-24 design file. The expectation is that the additional sites sampled by Oklahoma will NOT be submitted to NRSA.

Appendix G: Texas

Objectives:

The Texas primary goal is to have enough sites within each of their biological ecoregions as well as enough sites by stream size within each of those regions for a valid state statistical design.

The Texas Biological Aggregated Ecoregions are defined by combining Omernik Level 3 Ecoregions as follows:

Biological Aggregated Ecoregions	Level 3 Ecoregions (Omernik)
CTP: Central Texas Plateau	30
HPT: High Plains and Tablelands	25 & 26
CSH: South Central and Southern Humid	33 & 35
SOD: Southern Deserts	24 & 23
STP: Southern Texas Plains	31
HAP: Subhumid Agricultural Plains	27, 29 & 32
GCP: Western Gulf Coast Plains	34

Survey Design

The survey design for Texas consists of two separate designs. First, the NRSA 2023-24 design for Texas is completed to meet the requirements for NRSA. Next, based on that design additional sites are selected in specific Biological Aggregated Ecoregions and stream size categories to meet the requirements for Texas.

Sample Size Requirements

Texas would like to have approximately and equal number of sites for the seven (7) Texas Biological Regions and approximately equal number of sites by stream size categories: small streams (SS), large streams (LS), and rivers (RV) within those regions. NRSA 2023-24 requires 70 sites for Texas. The number of sites selected for NRSA for base sites are

```
TX_ECO LS RV SS Total
Central Texas Plateau 1 6 2 9
High Plains 3 4 0 7
South Central and Southern Humid 4 11 6 21
Southern Deserts 2 2 0 4
Southern Texas Plains 1 4 0 5
Subhumid Agricultural Plains 4 5 4 13
Western Gulf Coast Plains 3 4 4 11
Total 18 36 16 70
```

While the actual number of sites in each of these categories will not be known until site evaluations are completed, three aggregated ecoregions have fewer sites than expected and generally they are also stream sites. Texas plans to add 10 sites to achieve 80 sites. Based on the above, additional sites are selected for the three ecoregion and stream size categories to balance the sampling.

Panels and Site Replacement

The panels are the same as for NRSA 2023-24 with the exception that the additional 10 sites and their over samples are in NRS23_23Base_TX and NRS23_23Over_TX. Sites should be used and replaced as described for the national design with the exception that over sample sites can be replaced by the next site within a Texas biological aggregated ecoregion instead of anywhere within the state. The latter is intended to meet the requirements of approximately an equal number of sites within those regions and within stream size categories.

Note that all Texas sites are provided in the NRSA 2023-24 design file. The expectation is that the additional sites sampled by Texas will be submitted to NRSA.

Appendix H: Virginia

Virginia conducts state-level probability surveys. Given that the design is compatible with NRSA 2023-24, the NRSA design will consist of the panels from the Resample Design and the sites from the Virginia state-level survey. No New Site Design is required for Virginia. Virginia samples by year and that process must be followed for NRSA 2023-24.

Appendix I: Wisconsin

The NRSA 2023-24 sample frame is based on NHDPlusHR which is at least 1:24000. Given this, NHDPlusHR-based sample frame will be used for the additional sites required for New Hampshire. This was completed by selecting additional over sample sites for SS, LS, and RV (10 times more), compared to the standard 5 times more for each state. No other change was implemented.

Note that at the additional sites, Wisconsin will not be providing that data to NRSA.

Appendix J: Additional Tables

Base Sites

Unique Sites by State

STRATUM	SS	LS	RV	None	Total
AL	10	9	17	0	36
AR	8	8	20	0	36
AZ	8	8	14	0	30
CA	18	18	36	0	72
CO	11	12	15	0	38
СТ	5	5	10	0	20
DE	5	5	10	0	20
FL	5	5	10	0	20
GA	8	8	16	0	32
IA	9	9	20	0	38
ID	10	10	22	0	42
IL	9	10	17	0	36
IN	5	5	12	0	22
KS	0	0	0	52	52
KY	6	6	14	0	26
LA	7	7	14	0	28
MA	5	5	10	0	20
MD	5	5	10	0	20
ME	9	11	22	0	42
MI	15	18	35	0	68
MN	13	16	31	0	60
MO	14	12	26	0	52
MS	9	8	13	0	30
MT	18	18	36	0	72
NC	6	7	13	0	26
ND	9	8	21	0	38
NE	12	11	17	0	40
NH	5	5	10	0	20
NJ	5	5	10	0	20
NM	6	6	10	0	22

NV	8	7	11	0	26
NY	18	18	34	0	70
ОН	8	8	20	0	36
OK	13	10	35	0	58
OR	10	11	31	0	52
PA	10	10	18	0	38
RI	5	5	10	0	20
SC	5	5	10	0	20
SD	16	16	26	0	58
TN	7	6	15	0	28
TX	16	18	36	0	70
UT	7	7	16	0	30
VA	5	6	11	0	22
VT	5	5	10	0	20
WA	9	10	29	0	48
WI	18	18	32	0	68
WV	5	5	10	0	20
WY	13	15	18	0	46
Total	433	440	883	52	1808

Revisit Sites by State

STRATUM	SS	LS	RV	None	Total
AL	1	1	2	0	4
AR	1	1	2	0	4
AZ	1	1	2	0	4
CA	1	1	2	0	4
CO	1	1	2	0	4
CT	1	1	2	0	4
DE	1	1	2	0	4
FL	1	1	2	0	4
GA	1	1	2	0	4
IA	1	1	2	0	4
ID	1	1	2	0	4
IL	1	1	2	0	4
IN	1	1	2	0	4

KS	0	0	0	4	4
KY	1	1	2	0	4
LA	1	1	2	0	4
MA	1	1	2	0	4
MD	1	1	2	0	4
ME	1	1	2	0	4
MI	1	1	2	0	4
MN	1	1	2	0	4
MO	1	1	2	0	4
MS	1	1	2	0	4
MT	1	1	2	0	4
NC	1	1	2	0	4
ND	1	1	2	0	4
NE	1	1	2	0	4
NH	1	1	2	0	4
NJ	1	1	2	0	4
NM	1	1	2	0	4
NV	1	1	2	0	4
NY	1	1	2	0	4
ОН	1	1	2	0	4
OK	1	1	2	0	4
OR	1	1	2	0	4
PA	1	1	2	0	4
RI	1	1	2	0	4
SC	1	1	2	0	4
SD	1	1	2	0	4
TN	1	1	2	0	4
TX	1	1	2	0	4
UT	1	1	2	0	4
VA	1	1	2	0	4
VT	1	1	2	0	4
WA	1	1	2	0	4
WI	1	1	2	0	4
WV	1	1	2	0	4
WY	1	1	2	0	4

Total 47 47 94 4 192

18-19 vs 23-24 by State

STRATUM	1819	2324	Total
AL	14	22	36
AR	13	23	36
AZ	15	15	30
CA	33	39	72
CO	18	20	38
СТ	7	13	20
DE	7	13	20
FL	9	11	20
GA	16	16	32
IA	16	22	38
ID	21	21	42
IL	17	19	36
IN	10	12	22
KS	25	27	52
KY	13	13	26
LA	7	21	28
MA	9	11	20
MD	9	11	20
ME	12	30	42
MI	33	35	68
MN	27	33	60
MO	17	35	52
MS	6	24	30
MT	34	38	72
NC	12	14	26
ND	16	22	38
NE	19	21	40
NH	6	14	20
NJ	9	11	20
NM	11	11	22
NV	12	14	26

NY	28	42	70
ОН	15	21	36
OK	28	30	58
OR	24	28	52
PA	17	21	38
RI	6	14	20
SC	9	11	20
SD	29	29	58
TN	13	15	28
TX	35	35	70
UT	14	16	30
VA	7	15	22
VT	9	11	20
WA	20	28	48
WI	34	34	68
WV	7	13	20
WY	22	24	46
Total	790	1018	1808

Fish Tissue by State for Eligible Sites (Rivers)

1 1011 1 10000	\sim	tate 10	21181010
STRATUM	FT	NoFT	RV_Total
AL	12	5	17
AR	14	6	20
AZ	9	5	14
CA	25	11	36
CO	10	5	15
СТ	6	4	10
DE	6	4	10
FL	7	3	10
GA	11	5	16
IA	14	6	20
ID	15	7	22
IL	12	5	17
IN	8	4	12
KS	7	3	10

KY	9	5	14
LA	10	4	14
MA	7	3	10
MD	7	3	10
ME	15	7	22
MI	24	11	35
MN	21	10	31
MO	18	8	26
MS	10	3	13
MT	25	11	36
NC	8	5	13
ND	15	6	21
NE	12	5	17
NH	8	2	10
NJ	7	3	10
NM	7	3	10
NV	8	3	11
NY	23	11	34
ОН	14	6	20
OK	24	11	35
OR	21	10	31
PA	12	6	18
RI	8	2	10
SC	7	3	10
SD	18	8	26
TN	10	5	15
TX	25	11	36
UT	11	5	16
VA	8	3	11
VT	7	3	10
WA	20	9	29
WI	22	10	32
WV	6	4	10
WY	12	6	18
Total	615	278	893

Over Sites

Unique Sites by State

STRATUM	SS	LS	RV	None	Total
AL	26	28	60	0	114
AR	23	26	75	0	124
AZ	44	26	41	0	111
CA	168	68	105	0	341
СО	117	46	55	0	218
СТ	23	17	35	0	75
DE	25	20	35	0	80
FL	28	18	27	0	73
GA	28	24	44	0	96
IA	35	32	53	0	120
ID	97	39	56	0	192
IL	27	39	53	0	119
IN	22	25	35	0	82
KS	0	0	0	1754	1754
KY	18	18	38	0	74
LA	30	30	45	0	105
MA	19	18	25	0	62
MD	23	18	28	0	69
ME	30	35	90	0	155
MI	48	48	93	0	189
MN	50	56	90	0	196
MO	65	43	80	0	188
MS	30	35	60	0	125
MT	56	70	100	0	226
NC	117	95	159	0	371
ND	27	41	65	0	133
NE	36	84	72	0	192
NH	143	137	45	0	325
NJ	22	19	26	0	67
NM	97	101	80	0	278
NV	39	98	32	0	169
NY	82	62	120	0	264

ОН	25	24	60	0	109
ОК	52	43	94	0	189
OR	66	35	85	0	186
PA	30	29	55	0	114
RI	29	20	45	0	94
SC	18	23	29	0	70
SD	48	313	83	0	444
TN	21	18	40	0	79
TX	155	91	115	0	361
UT	25	24	47	0	96
VA	16	19	45	0	80
VT	16	21	26	0	63
WA	39	30	90	0	159
WI	93	112	187	0	392
WV	18	18	35	0	71
WY	77	102	117	0	296
Total	2323	2338	3075	1754	9490

18-19 vs 23-24 by State					
STRATUM	1819	2324	Total		
AL	4	110	114		
AR	9	115	124		
AZ	36	75	111		
CA	146	195	341		
CO	118	100	218		
СТ	10	65	75		
DE	15	65	80		
FL	18	55	73		
GA	16	80	96		
IA	10	110	120		
ID	87	105	192		
IL	24	95	119		
IN	22	60	82		
KS	104	1650	1754		
KY	9	65	74		

LA	0	105	105
MA	7	55	62
MD	14	55	69
ME	5	150	155
MI	14	175	189
MN	31	165	196
MO	13	175	188
MS	0	125	125
MT	36	190	226
NC	301	70	371
ND	23	110	133
NE	87	105	192
NH	10	315	325
NJ	12	55	67
NM	223	55	278
NV	99	70	169
NY	54	210	264
ОН	4	105	109
OK	39	150	189
OR	46	140	186
PA	9	105	114
RI	19	75	94
SC	15	55	70
SD	299	145	444
TN	4	75	79
TX	136	225	361
UT	16	80	96
VA	5	75	80
VT	8	55	63
WA	19	140	159
WI	52	340	392
WV	6	65	71
WY	176	120	296
Total	2410	7080	9490