Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

    • Environmental Topics
    • Air
    • Bed Bugs
    • Cancer
    • Chemicals, Toxics, and Pesticide
    • Emergency Response
    • Environmental Information by Location
    • Health
    • Land, Waste, and Cleanup
    • Lead
    • Mold
    • Radon
    • Research
    • Science Topics
    • Water Topics
    • A-Z Topic Index
    • Laws & Regulations
    • By Business Sector
    • By Topic
    • Compliance
    • Enforcement
    • Laws and Executive Orders
    • Regulations
    • Report a Violation
    • Environmental Violations
    • Fraud, Waste or Abuse
    • About EPA
    • Our Mission and What We Do
    • Headquarters Offices
    • Regional Offices
    • Labs and Research Centers
    • Planning, Budget, and Results
    • Organization Chart
    • EPA History

Breadcrumb

  1. Home
  2. Environmental Geophysics
  3. Resources
  4. Geophysical Properties

Electromagnetic Signal Attenuation (Skin Depth)

In electromagnetic (EM) methods, the electrical conductivity of the earth plays a pivotal role in the EM signal penetration and depth resolution that can be obtained.  High electrical conductivity removes, or attenuates, energy from the EM wave through the work done by moving electrical charge.  High conductivity materials effectively absorb the EM energy and limits or attenuates its flow, or penetration, deeper into the earth.  This attenuation of the EM signal is exponential with depth and is described by the skin depth relationship.

Skin depth is the depth at which the EM signal attenuates to 1/e or approximately a third.  Skin depth is typically measured in meters and is related to the frequency (f) of the EM wave and the electrical conductivity (σ) of the media (i.e., geologic materials) the EM wave is propagating through.

skin depth = 500 √ [1 / (σ f)]

Skin depth is inversely proportional to conductivity (σ) and frequency (f).  Higher electrically conductive earth materials and higher frequency EM wave result in shallow EM wave penetration.  The frequency of the wave presents a trade-off for resolution and depth.  The higher the frequency, the higher the resolution and lower penetration (smaller skin depth), while the lower the frequency the deeper the signal penetration (larger the skin depth) and lower resolution.

Environmental Geophysics

  • About Environmental Geophysics
    • Frequent Questions
  • Tools
    • Decision Support
    • Geophysics Software Utilities
    • Forward Models
    • Inverse Models
  • Resources
    • Geophysical Methods
      • Borehole Geophysical Methods
      • Surface Geophysical Methods
      • Waterborne Geophysical Methods
    • Geophysical Properties
      • Dielectric Permittivity
      • Density
      • Porosity
      • Magnetic Susceptibility
      • Electrical Conductivity and Resistivity
      • Electromagnetic Properties
      • Electromagnetic Signal Attenuation
      • Seismic Velocities
      • Seismic Reflectivity
    • Geophysical References
    • Inversion
  • Publications
  • Related Links
Contact Us about Environmental Geophysics
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on January 24, 2025
  • Assistance
  • Spanish
  • Arabic
  • Chinese (simplified)
  • Chinese (traditional)
  • French
  • Haitian Creole
  • Korean
  • Portuguese
  • Russian
  • Tagalog
  • Vietnamese
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshot
  • Grants
  • No FEAR Act Data
  • Plain Writing
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions
  • Site Feedback

Follow.