Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

    • Environmental Topics
    • Air
    • Bed Bugs
    • Cancer
    • Chemicals, Toxics, and Pesticide
    • Emergency Response
    • Environmental Information by Location
    • Health
    • Land, Waste, and Cleanup
    • Lead
    • Mold
    • Radon
    • Research
    • Science Topics
    • Water Topics
    • A-Z Topic Index
    • Laws & Regulations
    • By Business Sector
    • By Topic
    • Compliance
    • Enforcement
    • Laws and Executive Orders
    • Regulations
    • Report a Violation
    • Environmental Violations
    • Fraud, Waste or Abuse
    • About EPA
    • Our Mission and What We Do
    • Headquarters Offices
    • Regional Offices
    • Labs and Research Centers
    • Planning, Budget, and Results
    • Organization Chart
    • EPA History

Breadcrumb

  1. Home
  2. Environmental Geophysics
  3. Resources
  4. Geophysical Properties

Seismic Velocities

In environmental geophysics seismic energy sources are typically a small explosion or a hammer blow, which generate three fundamental types of elastic waves:  P (primary, compressional) waves; S (secondary, shear) waves, and surface waves.  The P and S waves propagate through the body of the earth, while the surface waves can exist only close to the free surface.  Since P and S waves are predominately used in environmental geophysics, surface waves are not included in this discussion.

P waves have a particle motion in the direction of propagation, while particles under the influence of S waves move transverse to the direction of propagation.  S waves cannot propagate through liquids because liquids have no shear rigidity.

P waves velocities are typically 50% higher than S waves.  Vp and Vs are governed by the elastic moduli (Young's modulus (E), Poisson's ratio (ν), and Bulk modulus (κ)) and the density (ρ) of geologic material.

P-wave velocity = Vp = √ [(κ + 4/3μ)/ρ]

S-wave velocity = Vs = √ (μ/ρ)

where,  ρ = density; k = bulk modulus; and μ = shear modulus

Seismic velocities are usually expressed in SI units of meters per second.  Occasionally, seismic velocities are expressed as kilometers per second or meters per millisecond.

Environmental Geophysics

  • About Environmental Geophysics
    • Frequent Questions
  • Tools
    • Decision Support
    • Geophysics Software Utilities
    • Forward Models
    • Inverse Models
  • Resources
    • Geophysical Methods
      • Borehole Geophysical Methods
      • Surface Geophysical Methods
      • Waterborne Geophysical Methods
    • Geophysical Properties
      • Dielectric Permittivity
      • Density
      • Porosity
      • Magnetic Susceptibility
      • Electrical Conductivity and Resistivity
      • Electromagnetic Properties
      • Electromagnetic Signal Attenuation
      • Seismic Velocities
      • Seismic Reflectivity
    • Geophysical References
    • Inversion
  • Publications
  • Related Links
Contact Us about Environmental Geophysics
Contact Us to ask a question, provide feedback, or report a problem.
Last updated on January 24, 2025
  • Assistance
  • Spanish
  • Arabic
  • Chinese (simplified)
  • Chinese (traditional)
  • French
  • Haitian Creole
  • Korean
  • Portuguese
  • Russian
  • Tagalog
  • Vietnamese
United States Environmental Protection Agency

Discover.

  • Accessibility Statement
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshot
  • Grants
  • No FEAR Act Data
  • Plain Writing
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data
  • Inspector General
  • Jobs
  • Newsroom
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions
  • Site Feedback

Follow.